
Probabilistic Programming Inference via
Intensional Semantics

Simon Castellan1 and Hugo Paquet2

1 Imperial College London, United Kingdom
simon.castellan@phis.me

2 University of Cambridge, United Kingdom
hugo.paquet@cl.cam.ac.uk

Abstract. We define a new denotational semantics for a first-order
probabilistic programming language in terms of probabilistic event struc-
tures. This semantics is intensional, meaning that the interpretation of
a program contains information about its behaviour throughout execu-
tion, rather than a simple distribution on return values. In particular,
occurrences of sampling and conditioning are recorded as explicit events,
partially ordered according to the data dependencies between the corre-
sponding statements in the program.
This interpretation is adequate: we show that the usual measure-theoretic
semantics of a program can be recovered from its event structure repre-
sentation. Moreover it can be leveraged for MCMC inference: we prove
correct a version of single-site Metropolis-Hastings with incremental re-
computation, in which the proposal kernel takes into account the se-
mantic information in order to avoid performing some of the redundant
sampling.

Keywords: Probabilistic programming · Denotational Semantics · Event
structures · Bayesian inference.

1 Introduction

Probabilistic programming languages [7] were put forward as promising tools
for practitioners of Bayesian statistics. By extending traditional programming
languages with primitives for sampling and conditioning, they allow the user
to express a wide class of statistical models, and provide a simple interface for
encoding inference problems. Although the subject of active research, it is still
notoriously difficult to design inference methods for probabilistic programs which
perform well for the full class of expressible models.

One popular inference technique, proposed by Wingate et al. [21], involves
adapting well-known Monte-Carlo Markov chain methods from statistics to
probabilistic programs, by manipulating program traces. One such method is
the Metropolis-Hastings algorithm, which relies on a key proposal step: given a
program trace x (a sequence x1, . . . , xn of random choices with their likelihood),
a proposal for the next trace sample is generated by choosing i ∈ {1, . . . , n}



2 S. Castellan, H. Paquet

uniformly, resampling xi, and then continuing to execute the program, only per-
forming additional sampling for those random choices not appearing in x. The
variables already present in x are not resampled: only their likelihood is updated
according to the new value of xi. Likewise, some conditioning statements must
be re-evaluated in case the corresponding weight is affected by the change to xi.

Observe that there is some redundancy in this process, since the updating
process above will only affect variables and observations when their density di-
rectly depends on the value of xi. This may significantly affect performance: to
solve an inference problem one must usually perform a large number of proposal
steps. To overcome this problem, some recent implementations, notably [11, 25],
make use of incremental recomputation, whereby some of the redundancy can be
avoided via a form of static analysis. However, as pointed out by Kiselyov [12],
establishing the correctness of such implementations is tricky.

Here we address this by introducing a theoretical framework in which to
reason about data dependencies in probabilistic programs. Specifially, our first
contribution is to define a denotational semantics for a first-order probabilis-
tic language, in terms of graph-like structures called event structures [22]. In
event structures, computational events are partially ordered according to the
dependencies between them; additionally they can be equipped with quantita-
tive information to represent probabilistic processes [15, 23]. This semantics is
intensional, unlike most existing semantics for probabilistic programs, in which
the interpretation of a program resembles a probability distribution on output
values. We relate our approach to a measure-theoretic semantics [17] through an
adequacy result.

Our second contribution is the design of a Metropolis-Hastings algorithm
which exploits the event structure representation of the program at hand. Some
of the redundancy in the proposal step of the algorithm is avoided by taking into
account the extra dependency information given by the semantics. We provide a
proof of correctness for this algorithm, and argue that an implementation is real-
istically achievable: we show in particular that all graph structures involved and
the associated quantitative information admit a finite, concrete representation.

Outline of the paper. In § 2 we give a short introduction to probabilistic program-
ming. We define our main language of study and its measure-theoretic semantics.
In § 3.1, we introduce MCMC methods and the Metropolis-Hastings algorithm
in the context of probabilistic programming. We then motivate the need for in-
tensional semantics in order to capture data dependency. In § 4 we define our
interpretation of programs and prove adequacy. In § 5 we define an updated
version of the algorithm, and prove its correctness. We conclude in § 6.

The proofs of the statements are detailed in the appendix.

2 Probabilistic programming

In this section we motivate the need for capturing data dependency in probabilis-
tic programs. Let us start with a brief introduction to probabilistic programming
– a more comprehensive account can be found in [7].



Probabilistic Programming Inference via Intensional Semantics 3

2.1 Conditioning and posterior distribution

Let us introduce the problem of inference in probabilistic programming from the
point of view of programming language theory.

We consider a first-order programming language enriched with a real num-
ber type R and a primitive sample for drawing random values from a given
family of standard probability distributions. The language is idealised — but it
is assumed that an implementation of the language comprises built-in sampling
procedures for those standard distributions. Thus, repeatedly running the pro-
gram sample Uniform (0, 1) returns a sequence of values approaching the true
uniform distribution on [0, 1].

Via other constructs in the language, standard distributions can be combined,
as shown in the following example program of type R:

let x = sample Uniform(0, 1) in

let y = sample Gaussian(x, 2) in

x + y

Here the output will follow a probability distribution built out of the usual
uniform and Gaussian distributions. Many probabilistic programming languages
will offer more general programming constructs: conditionals, recursion, higher-
order functions, data types, etc., enabling a wide range of distributions to be
expressed in this way. Such a program is sometimes called a generative model.

Conditioning. The process of conditioning involves rescaling the distribution
associated with a generative model, so as to reflect some bias. Going back to the
example above, say we have made some external measurement indicating that
y = 0, but we would like to account for possible noise in the measurement using
another Gaussian. To express this we modify the program as follows:

let x = sample Uniform (0, 1) in

let y = sample Gaussian (x, 2) in

observe y (Gaussian (0, 0.01));

x + y;

The purpose of the observe statement is to increase the occurrence of executions
in which y is close to 0; the original distribution, known as the prior, must be
updated accordingly. The probabilistic weight of each execution is multiplied
by an appropriate score, namely the likelihood of the current value of y in
the Gaussian distribution with parameters (0, 0.01). (This is known as a soft
constraint. Conditioning via hard constraints, i.e. only giving a nonzero score to
executions where y is exactly 0, is not practically feasible.)

The language studied here does not have an observe construct, but instead
an explicit score primitive; this appears already in [18, 17]. So the third line
in the program above would instead be score(pdf-Gaussian (0, 0.01) (y))

where pdf-Gaussian (0, 0.01) is the density function of the Gaussian distri-
bution. The resulting distribution is not necessarily normalised. We obtain the



4 S. Castellan, H. Paquet

posterior distribution by computing the normalising constant, following Bayes’
rule:

posterior ∝ likelihood× prior.

This process is known as Bayesian inference and has ubiquitous applications. The
difficulty lies in computing the normalising constant, which is usually obtained
as an integral. Below we discuss approximate methods for sampling from the
posterior distribution; they do not rely on this normalising step.

Measure theory. Because this work makes heavy use of probability theory, we
start with a brief account of measure theory. A standard textbook for this is [1].
Recall that a measurable space is a set X equipped with a σ-algebra ΣX : a
set of subsets of X containing ∅ and closed under complements and countable
unions. Elements of ΣX are called measurable sets. A measure on X is a
function µ : ΣX → [0,∞], such that µ(∅) = 0 and, for any countable family
{Ui}i∈I of measurable sets, µ(

⋃
i∈I Ui) =

∑
i∈I µ(Ui).

An important example is that of the set R of real numbers, whose σ-algebra
ΣR is generated by the intervals [a, b), for a, b ∈ R (in other words, it is the small-
est σ-algebra containing those intervals). The Lebesgue measure on (R, ΣR)
is the (unique) measure λ assigning b− a to every interval [a, b) (with a ≤ b).

Given measurable spaces (X,ΣX) and (Y,ΣY ), a function f : X → Y is
measurable if for every U ∈ ΣY , f−1U ∈ ΣX . A measurable function f : X →
[0,∞] can be integrated : given U ∈ ΣX the integral

∫
U
f dλ is a well-defined

element of [0,∞]; indeed the map µ : U 7→
∫
U
fdλ is a measure on X, and f is

said to be a density for µ. The precise definition of the integral is standard but
slightly more involved; we omit it.

We identify the following important classes of measures: a measure µ on
(X,ΣX) is a probability measure if µ(X) = 1. It is finite if µ(X) <∞, and
it is s-finite if µ =

∑
i∈I µi, a pointwise, countable sum of finite measures.

We recall the usual product and coproduct constructions for measurable
spaces and measures. If {Xi}i∈I is a countable family of measurable spaces,
their product

∏
i∈I Xi and coproduct

∐
i∈I Xi =

⋃
i∈I{i}×Xi as sets can be

turned into measurable spaces, where:

– Σ∏
i∈I Xi

is generated by {
∏
i∈I Ui | Ui ∈ ΣXi for all i}, and

– Σ∐
i∈I Xi

is generated by {{i} × Ui | i ∈ I and Ui ∈ ΣXi}.

The measurable spaces in this paper all belong to a well-behaved subclass:
call (X,ΣX) a standard Borel space if it either countable and discrete (i.e.
all U ⊆ X are in ΣX), or measurably isomorphic to (R, ΣR). Note that standard
Borel spaces are closed under countable products and coproducts, and that in a
standard Borel space all singletons are measurable.

2.2 A first-order probabilistic programming language

We consider a first-order, call-by-value language L with types

A,B ::= 1 | R |
∐
i∈I

Ai |
∏
i∈I

Ai



Probabilistic Programming Inference via Intensional Semantics 5

where I ranges over nonempty countable sets. The types denote measurable
spaces in a natural way: J1K is the singleton space, and JRK = (R, ΣR). Products
and coproducts are interpreted via the corresponding measure-theoretic con-
structions: J

∏
i∈I AiK =

∏
i∈IJAiK and J

∐
i∈I AiK =

∐
i∈IJAiK =

⋃
i∈I{i} × JAiK.

Moreover, each measurable space JAK has a canonical measure µJAK : ΣJAK → R,
induced from the Lebesgue measure on R and the Dirac measure on J1K via
standard product and coproduct measure constructions.

The terms of L are given by the following grammar:

M,N ::= () |M ;N | f | let a = M in N | x
| (Mi)i∈I | case M of {(i, x)⇒ Ni}i∈I
| sample d (M) | score M

and we use standard syntactic sugar to manipulate integers and booleans: B =
1+1, N =

∑
i∈ω 1, and constants are given by the appropriate injections. Condi-

tionals and sequencing can be expressed in the usual way: if M then N1 else N2 =
case M of {(i, )⇒ Ni}i∈{1,2}, and M ;N = let a = M in N , where a does
not occur in N . In the grammar above:

– f ranges over measurable functions JAK→ JBK, where A and B are types;
– d ranges over a family of parametric distributions over the reals, i.e. mea-

surable functions Rn × R→ R, for some n ∈ N, such that for every r ∈ Rn,∫
d(r,−) = 1. For the purposes of this paper we ignore all issues related

to invalid parameters, arising from e.g. a call to gaussian with standard
deviation σ = 0. (An implementation could, say, choose to behave according
to an alternative distribution in this case.)

The typing rules are as follows:

Γ `M : A Γ, a : A ` N : B

Γ ` let a = M in N : B

Γ `M : Rn d : Rn × R→ R
Γ ` sample d (M) : R

Γ `M : R
Γ ` score M : 1 Γ, a : A ` a : A Γ ` () : 1

Γ `M :
∑
i∈I Ai Γ, x : Ai ` Ni : C

Γ ` case M of {(i, x)⇒ Ni}i∈I : C

Γ `Mi : Ai

Γ ` (Mi)i∈I :
∏
i∈I Ai

f : JAK→ JBK measurable Γ `M : A

Γ ` f M : B

Among the measurable functions f , we point out the following of interest:

– The usual product projections πi : J
∏
i∈I AiK → JAiK and coproduct injec-

tions ιi : JAiK→ J
∐
i∈I AiK;

– The operators +,× : R2 → R,
– The tests, eg. ≥ 0 : JRK→ JBK,
– The constant functions 1→ A of the form () 7→ a for some a ∈ JAK.

Examples for d include uniform : R2 × R→ R, gaussian : R2 × R→ R, ...



6 S. Castellan, H. Paquet

2.3 Measure-theoretic semantics of programs

We now define a semantics of probabilistic programs using the measure-theoretic
concept of kernel, which we define shortly. The content of this section is not new:
using kernels as semantics for probabilistic was originally proposed in [13], while
the (more recent) treatment of conditioning (score) via s-finite kernels is due
to Staton [17]. Intuitively, kernels provide a semantics of open terms Γ `M : A
as measures on JAK varying according to the values of variables in Γ .

Formally, a kernel from (X,ΣX) to (Y,ΣY ) is a function k : X×ΣY → [0,∞]
such that for each x ∈ X, k(x,−) is a measure, and for each U ∈ ΣY , k(−, U) is
measurable. (Here the σ-algebra Σ[0,∞] is the restriction of that of R+{∞}.) We
say k is finite (resp. probabilistic) if each k(x,−) is a finite (resp. probability)
measure, and it s-finite if it is a countable pointwise sum

∑
i∈I ki of finite

kernels. We write k : X  Y when k is an s-finite kernel from X to Y .
A term Γ ` M : A will denote an s-finite kernel JMK : JΓ K  JAK, where

the context Γ = x1 : A1, . . . , xn : An denotes the product of its components:
JΓ K = JA1K× · · · × JAnK.

Notice that any measurable function f : X → Y can be seen as a determinis-
tic kernel f† : X  Y . Given two s-finite kernels k : A B and l : A×B  C,
we define their composition l ◦ k : A C:

(l ◦ k)(a,X) =

∫
b∈B

l((a, b), C)× k(a,db).

Staton [17] proved that l ◦ k is a s-finite kernel.
The interpretation of terms is defined by induction:

– J()K is the lifting of JΓ K→ 1 : x 7→ ().
– Jlet a = M in NK is JNK ◦ JMK
– Jf MK = f† ◦ JMK
– JaK(x,X) = δx(X), the Dirac distribution δx(X) = 1 if x ∈ X and zero

otherwise.
– Jsample d (M)K = sam◦JMK where samd : Rn  R is given by samd(r, X) =∫

x∈X d(r, x)dx.
– Jscore MK = sco ◦ JMK where sco : JRK→ J1K is sco(r,X) = r · δ()(X).
– J(Mi)i∈IK(γ,

∏
i∈I Xi) =

∏
i∈IJMiK(γ,Xi): this is well-defined since the

∏
Xi

generate the measurable sets of the product space.
– Jcase M of {(i, x)⇒ Ni}i∈IK = coprod ◦ JMK where coprod : Γ ×

J
∐
i∈I AiK JBK maps (γ, {i} ×X) to JNiK(γ,X).

We observe that when M is a program making no use of conditioning (i.e. a
generative model), the kernel JMK is probabilistic:

Lemma 1. For Γ `M : A without scores, JMK(γ, JAK) = 1 for each γ ∈ JΓ K.

2.4 Exact inference

Note that a kernel 1  JAK is the same as a measure on JAK. Given a closed
program `M : A, the measure JMK is a combination of the prior (occurrences of



Probabilistic Programming Inference via Intensional Semantics 7

sample) and the likelihood (score). Because score can be called on arbitrary
arguments, it may be the case that the measure of the total space (that is, the
coefficient JMK(JAK), often called the model evidence) is 0 or ∞.

Whenever this is not the case, JMK can be normalised to a probability mea-
sure, the posterior distribution. For every U ∈ ΣJAK,

normJMK(U) =
JMK(U)

JMK(JAK)
.

However, in many cases, this computation is intractable. Thus the goal of approx-
imate inference is to approach normJMK, the true posterior, using a well-chosen
sequence of samples.

3 Approximate inference via intensional semantics

3.1 An introduction to approximate inference

In this section we describe the Metropolis-Hastings (MH) algorithm for approxi-
mate inference in the context of probabilistic programming. Metropolis-Hastings
is a generic algorithm to sample from a probability distribution D on a mea-
surable state space X, of which we know the density d : X → R up to some
normalising constant.

MH is part of a family of inference algorithms called Monte-Carlo Markov
chain, in which the posterior distribution is approximated by a series of samples
generated using a Markov chain.

Formally, the MH algorithm defines a Markov chain M on the state space X,
that is a probabilistic kernel M : X  X. The correctness of the MH algorithm
is expressed in terms of convergence. It says that for almost all x ∈ X, the
distribution Mn(x, ·) converges to D as n goes to infinity, where Mn is the n-
iteration of M : M ◦ . . . ◦M . Intuitively, this means that iterated sampling from
M gets closer to D with the number of iterations.

The MH algorithm is itself parametrised by a Markov chain, referred to as
the proposal kernel P : X  X: for each sampled value x ∈ X, a proposed
value for the next sample is drawn according to P (x, ·). Note that correctness
only holds under certain assumptions on P .

The MH algorithm assumes that we know how to sample from P , and that
its density is known, ie. there is a function p : X2 → R such that p(x, ·) is the
density of the distribution P (x, ·),

The MH algorithm. On an input state x, the MH algorithm samples from P (x, ·)
and gets a new sample x′. It then compares the likelihood of x and x′ by com-
puting an acceptance ratio α(x, x′) which says whether the return state is x′ or
x. In pseudo-code, for an input state x ∈ X:

1. Sample a new state x′ from the distribution P (x, ·)



8 S. Castellan, H. Paquet

2. Compute the acceptance ratio of x′ with respect to x:

α(x, x′) = min

(
1,
d(x′)× p(x, x′)
d(x)× p(x′, x)

)
3. With probability α(x, x′), return the new sample x′, otherwise return the

input state x.

The formula for α(x, x′) is known as the Hastings acceptance ratio and is key to
the correctness of the algorithm.

Very little is assumed of P , which makes the algorithm very flexible; but of
course the convergence rate may vary depending on the choice of P . We give a
more formal description of MH in § 5.2.

Single-site MH and incremental recomputation. To apply this algorithm to prob-
abilistic programming, we need a proposal kernel. Given a program M , the ex-
ecution traces of M form a measurable set XM . In this setting the proposal is
given by a kernel XM  XM .

A widely adopted choice of proposal is the single-site proposal kernel which,
given a trace x ∈ XM , generates a new trace x′ as follows:

1. Select uniformly one of the random choices s encountered in x.
2. Sample a new value for this instruction.
3. Re-execute the program M from that point onwards and with this new value

for s, only ever resampling a variable when the corresponding instruction did
not already appear in x.

Observe that there is some redundancy in this process: in the final step,
the entire program has to be explored even though only a subset of the random
choices will be re-evaluated. Some implementations of Trace MH for probabilistic
programming make use of incremental recomputation.

We propose in this paper to statically compile a program M to an event struc-
ture GM which makes explicit the probabilistic dependences between events, thus
avoiding unnecessary sampling.

3.2 Capturing probabilistic dependencies using event structures

Consider the program depicted in Figure 1 in which we are interested in learning
the parameters µ and σ of a Gaussian distribution from which we have observed
two data points, say v1 and v2. For i = 1, 2 the function fi : R→ R expresses a
soft constraint; it can be understood as indicating how much the sampled value
of xi matches the observed value vi.

A trace of this program will be of the form

Samµ · Samσ · Samx1 · Samx2 · Sco (f1 x1) · Sco (f2 x2) · Rtn (µ, σ),

for some µ, σ, x1, and x2 ∈ R corresponding to sampled values for variables mu,
sigma, x1 and x2.



Probabilistic Programming Inference via Intensional Semantics 9

let mu = sample uniform (150, 200) in

let sigma = sample uniform (1, 50) in

let x1 = sample gaussian (mu, sigma) in

let x2 = sample gaussian (mu, sigma) in

score (f1 x1); score (f2 x2);

(mu, sigma)

Fig. 1. A simple probabilistic program

A proposal step following the single-site kernel may choose to resample µ;
then it must run through the entire trace, checking for potential dependencies
to µ, though in this case none of the other variables need to be resampled.

So we argue that viewing a program as tree of traces is not most appropriate
in this context: we propose instead to compile a program into a partially ordered
structure reflecting the probabilistic dependencies.

With our approach, the example above would yield the partial order displayed
below on the right-hand side. The nodes on the first line corresponds to the
sample for µ and σ, and those on the second line to x1 and x2. This provides an
accurate account of the probabilistic dependencies: whenever e ≤ e′ (where ≤ is
the reflexive, transitive closure of _), it is the case that e′ depends on e.

According to this representation of the program, a trace is no longer a linear
order, but instead another partial order, similar to the previous one only an-
notated with a specific value for each variable. This is displayed below, on the
left-hand side; note that the order ≤ is drawn top to bottom. There is an obvious
erasure map from the trace (left) to the graph (right); this will be important
later on.

Samσ Samµ Sam Sam

Samx1 Samx2 Sam Sam

Sco (f1 x1) Sco (f2 x2) Sco Sco

Rtn (µ, σ) Rtn

Conflict and control flow. We have seen that a partial order can be used to faith-
fully represent the data dependency in the program; it is however not sufficient
to accurately describe the control flow. In particular, computational events may
live in different branches of a conditional statement, as in the following example:

let x = sample uniform (0, 5) in

if x ≥ 2 then sample gaussian (3, 1)

else sample uniform (2, 4)



10 S. Castellan, H. Paquet Sam

Sam Sam

Rtn Rtn

The last two samples are independent, but also incompati-
ble: in any given trace only one of them will occur. An example
of a trace for this program is Sam 1 · Sam 3 · Rtn 3.

We represent this information by enriching the partial or-
der with a conflict relation, indicating when two actions are
in different branches of a conditional statement. The resulting structure is de-
picted on the right. Combining partial order and conflict in this way can be
conveniently formalised using event structures [22]:

Definition 1. An event structure is a tuple (E,≤,#) where (E,≤) is a par-
tially ordered set and # is an irreflexive, binary relation on E such that

– for every e ∈ E, the set [e] = {e′ ∈ E | e′ ≤ e} is finite, and
– if e#e′ and e′ ≤ e′′, then e#e′′.

From the partial order ≤, we extract immediate causality _: e _ e′ when
e < e′ with no events in between; and from the conflict relation, we extract
minimal conflict : e e′ when e#e′ and there are no other conflicts in
[e] ∪ [e′]. In pictures we draw _ and rather than ≤ and #.

A subset x ⊆ E is a configuration of E if it is down-closed (if e′ ≤ e ∈ x
then e′ ∈ x) and conflict-free (if e, e′ ∈ x then ¬(e#e′)). So in this framework,
configurations correspond to exactly to partial executions traces of E.

The configuration [e] is the causal history of e; we also write [e) for [e]\{e}.
We write C (E) for the set of all finite configurations of E, a partial order under
inclusion. A configuration x is maximal if it is maximal in C (E): for every

x′ ∈ C (E), if x ⊆ x′ then x = x′. We use the notation x
e
−−⊂x′ when x′ = x∪{e},

and in that case we say x′ covers x.
An event structure is confusion-free if minimal conflict is transitive, and if

any two events e, e′ in minimal conflict satisfy [e) = [e′).

Compositionality. In order to give semantics to the language in a compositional
manner, we must consider arbitrary open programs, i.e. with free parameters.
Therefore we also represent each call to a parameter a as a read event, marked
Rd a . For instance the program x+ y with two real parameters will become the
event structure

Rdx Rd y

Rtn

Note that the read actions on x and y are independent in the program (no order
is specified), and the event structure respects this independence.

Our dependency graphs are event structures where each event carries infor-
mation about the syntactic operation it comes from, a label, which depends on
the typing context of the program:

L static
Γ`B ::= Rd a | Rtn | Sam | Sco ,

where a ranges over variables a : A in Γ .



Probabilistic Programming Inference via Intensional Semantics 11

Definition 2. A dependency graph over Γ ` B is an event structure G along
with a labelling map lbl : G → L static

Γ`B where any two events s, s′ ∈ G labelled
Rtn are in conflict, and all maximal configurations of G are of the form [r] for
r ∈ G a return event.

The condition on return events ensures that in any configuration of G there is
at most one return event. Events of G are called static events.

We use dependency graphs as a causal representation of programs, reflecting
the dependency between different parts of the program. In what follows we en-
rich this representation with runtime information in order to keep track of the
dataflow of the program (in §3.3), and the associated distributions (in §3.4).

3.3 Runtime values and dataflow graphs

We have seen how data dependency can be captured by representing a program
P as a dependency graph GP . But observe that this graph does not give any
runtime information about the data in P ; every event s ∈ GP only carries a
label lbl(s) indicating the class of action it belongs to. (For an event labelled
Rd a , G does not specify the value at a; whereas at runtime this will be filled by
an element of JAK where A is the type of a.)

To each label, we can associate a measurable space of possible runtime values:

Q(Rd b) = JΓ (b)K Q(Rtn) = JAK Q(Sam) = (R, ΣR) Q(Sco) = (R, ΣR).

Then, in a particular execution, an event s ∈ GP has a value in Q(lbl(s)),
and can be instead labelled by the following expanded set:

L run
Γ`B ::= Rd a v | Rtn v | Sam r | Sco r

where r ranges over real numbers; in Rd a v, a : A ∈ Γ and v ∈ JAK; and in
Rtn v, v ranges over elements of JBK. Notice that there is an obvious forgetful
map α : L run

Γ`A → L static
Γ`A , discarding the runtime value. This runtime value can

be extracted from a label in L run
Γ`B as follows:

q(Rd b v) = v q(Rtn v) = v q(Sam r) = r q(Sco r) = r.

In particular, we have q(`) ∈ Q(α(`)).

Rd a tt Rd aff

Rtn 2 Rtn 3

Such runtime events organise themselves in an event
structure EP , labelled over L run

Γ`B , the runtime graph
of P . Runtime graphs are in general uncountable, and so
difficult to represent pictorially. It can be done in some
simple, finite cases: the graph for if a then 2 else 3 is depicted on the right.
Recall that in dependency graphs conflict was used to represent conditional
branches; here instead conflict is used to keep disjoint the possible outcomes of
the same static event. (Necessarily, this static event must be a sample or a read,
since other actions (return, score) are deterministic.)

Intuitively one can project runtime events to static events by erasing the run-
time information; this suggests the existence of a function πP : EP → GP . This
function will turn out to satisfy the axioms of a rigid map of event structures:



12 S. Castellan, H. Paquet

Definition 3. Given event structures (E,≤E ,#E) and (G,≤G,#G) a function
π : E → G is a rigid map if

– it preserves configurations: for every x ∈ C (E), πx ∈ C (G)
– it is locally injective: for every x ∈ C (E) and e, e′ ∈ x, if π(e) = π(e′) then
e = e′.

– it preserves dependency: if e ≤E e′ then π(e) ≤G π(e′).

In general π is not injective, since many runtime events may correspond to the
same static event – in that case however the axioms will require them to be in
conflict. The last condition in the definition ensures that all causal dependencies
come from G.

Given x ∈ C (GP ) we define the possible runtime values for x as the set
Q(x) of functions mapping s ∈ x to a runtime value in Q(lbl(s)); in other words
Q(x) =

∏
s∈x Q(lbl(s)). A configuration x′ of EP can be viewed as a trace over

πP x
′; hence π−1P {x} := {x′ ∈ C (EP ) | πPx′ = x} is the set of traces of P over

x. We can now define dataflow graphs:

Definition 4. A dataflow graph on Γ ` B is a triple S = (ES , GS , πS : ES →
GS) with GS a dependency graph and ES a runtime graph, such that:

– πS is a rigid map and lbl ◦ πS = α ◦ lbl : ES → L static
Γ`B

– for each x ∈ C (GS), the following function is injective

qx : π−1S {x} → Q(x)

x′ 7→ (s 7→ q(lbl(s)))

– if e, e′ ∈ ES with e e′ then πe = πe′, and moreover e and e′ are either
both sample or both read events.

As mentioned above, maximal configurations of EP correspond to total traces
of P , and will be the states of the Markov chain in § 5. By the second axiom,
they can be seen as pairs (x ∈ C (GS), q ∈ Q(x)). Because of the third axiom,
ES is always confusion-free.

Measurable fibres. Rigid maps are convenient in this context because, they al-
low for reasoning about program traces by organising them as fibres. The key
property we rely on is the following:

Lemma 2. If π : E → G is a rigid map of event structures, then the induced
map π : C (E) → C (G) is a discrete fibration: that is, for every y ∈ C (E), if
x ⊆ πy for some x ∈ C (G), then there is a unique y′ ∈ C (E) such that y′ ⊆ y
and πy′ = x.

This enables an essential feature of our approach: given a configuration x of
the dataflow graph G, the fibre π−1{x} over it contains all the (possibly partial)
program traces over x, i.e. those whose path through the program corresponds
to that of x. Additionally the lemma implies that every pair of configurations



Probabilistic Programming Inference via Intensional Semantics 13

x, x′ ∈ C (G) such that x ⊆ x′ induces a restriction map rx,x′ : π−1{x′} →
π−1{x}, whose action on a program trace over x′ is to return its prefix over x.

Although there is no measure-theoretic structure in the definition of dataflow
graphs, we can recover it: for every x ∈ C (GS), the fibre π−1S {x} can be equipped
with the σ-algebra induced from ΣQ(x) via qx; it is generated by sets q−1x U for
U ∈ ΣQ(x).

It is easy to check that this makes the restriction map rx,x′ : π−1S {x′} →
π−1S {x} measurable for each pair x, x′ of configurations with x ⊆ x′. (Note that
this makes S a measurable event structure in the sense of [15].) Moreover, the
map qx,s : π−1S {x} → Q(lbl(s)) for s ∈ x ∈ C (GS), mapping x′ ∈ π−1S {x} to
q(lbl(s′)) for s′ the unique antecedent by πS of s in x′, is also measurable.

We will also make use of the following result:

Lemma 3. Consider a dataflow S and x, y, z ∈ C (GS) with x ⊆ y, x ⊆ z, and
y ∪ z ∈ C (GS). If y ∩ z = x, then the space π−1S {y ∪ z} is isomorphic to the set

{(uy, uz) ∈ π−1S {y} × π
−1
S {z} | rx,y(uy) = rx,z(uz)},

with σ-algebra generated by sets of the form {(uy, uz) ∈ Xy × Xz | Xy ∈
Σπ−1

S {y}
, Xz ∈ Σπ−1

S {z}
and rx,y(uy) = rx,z(uz)}.

(For the reader with knowledge of category theory, this says exactly that the
diagram

π−1S {y ∪ z} π−1S {y}

π−1S {z} π−1S {x}

ry,y∪z

rz,y∪z rx,y

rx,z

is a pullback in the category of measurable spaces.)

3.4 Quantitative dataflow graphs

We can finally introduce the last bit of information we need about programs in
order to perform inference: the probabilistic information. So far, in a dataflow
graph, we know when the program is sampling, but not from which distribution.
This is resolved by adding for each sample event s in the dependency graph
a kernel ks : π−1{[s)}  π−1{[s]}. Given a trace x over [s), ks specifies a
probability distribution according to which x will be extended to a trace over
[s]. This distribution must of course have support contained in the set r−1[s),[s]{x}
of traces over [s] of which x is a prefix; this is the meaning of the technical
condition in the definition below.

Definition 5. A quantitative dataflow graph is a tuple S = (ES , GS , π :
ES → GS , (k

S
s )) where for each sample event s ∈ GS, kSs is a kernel π−1{[s)} 

π−1{[s]} satisfying for all x ∈ π−1{[s)},

kSs (x, π−1{[s]} \ r−1[s),[s]{x}) = 0.



14 S. Castellan, H. Paquet

This axiom stipulates that any extension x′ ∈ π−1S {[s]} of x ∈ π−1S {[s)}
drawn by ks must contain x; in effect ks only samples the runtime value for s.

From graphs to kernels. We show how to collapse a quantitative dataflow graph S
on Γ ` B to a kernel JΓ K JBK. First, we extend the kernel family on sampling

events (kSs : π−1{[s)}  π−1{[s]}) to a family (k
S[γ]
s : π−1{[s)}  π−1{[s]})

defined on all events s ∈ S, parametrised by the value of the environment

γ ∈ JΓ K. To define k
S[γ]
s (x, ·) it is enough to specify its value on the generating

set for Σπ−1{[s]}. As we have seen this contains elements of the form q−1[s] (U) with

U ∈ ΣQ([s]). We distinguish the following cases corresponding to the nature of
s:

– If s is a sample event, k
S[γ]
s = kSs

– If s is a read on a : A, any x ∈ π−1[s) has runtime information q[s)(x) in
Q([s)) which can be extended to Q([s]) by mapping s to γ(a):

kS[γ]s (x, q−1[s] U) = δq[s)(x)[s:=γ(a)](U)

– If s is a return or a score event: any x ∈ π−1{[s)} has at most one extension
to o(x) ∈ π−1{[s]} (because return and score events cannot be involved in a

minimal conflict): k
S[γ]
s (x, q−1[s] (U)) = δq[s](o(x))(U). If o(x) does not exist, we

let k
S[γ]
s (x,X) = 0.

We can now define a kernel k
S[γ]
x,s : π−1{x} π−1{x′} for every atomic extension

x
s
−−⊂x′ in GS , ie. when x′ \ x = {s}, as follows:

kS[γ]x,s (y, U) = ks(r[s),x(y), {w ∈ π−1S {[s]} | (y, w) ∈ U}).

The second argument to ks above is always measurable, by a standard measure-
theoretic argument based on Lemma 3, as x ∩ [s] = [s).

From this definition we derive:

Lemma 4. If x
s1
−−⊂x1 and x

s2
−−⊂x2 are concurrent extensions of x ( i.e. s1 and

s2 are not in conflict), then k
S[γ]
x1,s2 ◦ k

S[γ]
x,s1 = k

S[γ]
x2,s1 ◦ k

S[γ]
x,s2 .

Given a configuration x ∈ C (GS) and a covering chain ∅
s1
−−⊂x1 . . .

sn
−−⊂xn =

x, we can finally define a measure on π−1{x}:

µS[γ]x = kS[γ]xn−1,sn ◦ . . . ◦ k
S[γ]
∅,s1 (∗, ·),

where ∗ is the only trace over ∅. The particular covering chain used does not mat-
ter by the previous lemma. Using this, we can define the kernel of a quantitative
dataflow graph S as follows:

kernel(S)(γ,X) =
∑

r∈GS ,lbl(r)=Rtn

µ
S[γ]
[r] (q−1[r],r(X)),

where the measurable map q[r],r : π−1{r} → JBK looks up the runtime value of
r in an element of the fibre over [r] (defined in § 3.3).

Lemma 5. kernel(S) is an s-finite kernel JΓ K JBK.



Probabilistic Programming Inference via Intensional Semantics 15

4 Programs as labelled event structures

We now detail our interpretation of programs as quantitative dataflow graphs.
Our interpretation is given by induction, similarly to the measure-theoretic in-
terpretation given in § 2.3, in which composition of kernels plays a central role.
In § 4.1, we discuss how to compose quantitative dataflow graphs, and in § 4.2,
we define our interpretation.

4.1 Composition of probablistic event structures

Consider two quantitative dataflow graphs, S on Γ ` A, and T on Γ, a : A ` B
where a does not occur in Γ . In what follows we show how they can be composed
to form a quantitative dataflow graph T �a S on Γ ` B.

Unlike in the kernel model of § 2.3, we will need two notions of composition.
The first one is akin to the usual sequential composition: actions in T must
wait on S to return before they can proceed. The second is closer to parallel
composition: actions on T which do not depend on a read of the variable a can
be executed in parallel with S. The latter composition is used to interpret the let
construct. In let a = M in N , we want all the probabilistic actions or reads
on other variables which do not depend on the value of a to be in parallel with
M . However, in a program such as case M of {(i, x)⇒ Ni}i∈I we do not want
any actions of Ni to start before the selected branch is known, i.e. before the
return value of M is known.

By way of illustration, consider the following simple example, in which we
only consider runtime graphs, ignoring the rest of the structure for now. Suppose
S and T are given by

S =
Rd b tt Rd bff

Rtn ff Rtn tt

T =
Sam r Rd a tt Rd aff

Rtn ((), tt) Rtn ((),ff)

The graph S can be seen to correspond to the program if b then ff else tt
and T to the pairing (sample d (0), a) for any d. Here S is a runtime graph on
b : B ` B and T on a : B, b : B ` B.

Both notions of compositions are displayed in the diagram below. The se-
quential composition (left) corresponds to

if b then (sample d (0),ff) else (sample d (0), tt)

and the parallel composition to (sample d (0), if b then ff else tt):

T�aseqS =


Rd b tt Rd bff

Sam r Sam r

Rtn ff Rtn tt

 T�aparS =

 Sam r Rd b tt Rd bff

Rtn ff Rtn tt





16 S. Castellan, H. Paquet

Composition of runtime and dependency graphs. Let us now define both com-
position operators at the level of the event structures. Through the bijection
L static
Γ`B ' L run

Γ ′`1 where Γ ′(a) = 1 for all a ∈ dom(Γ ), we will see dependency
graphs and runtime graphs as the same kind of objects, event structures labelled
over L run

Γ`A.
The two compositions S �apar T and S �aseq T are two instances of the same

construction, parametrised by a set of labels D ⊆ L run
Γ,a:A`B . Informally, D spec-

ifies which events of T are to depend on the return value of S in the resulting
composition graph. It is natural to assume in particular that D contains all reads
on a, and all return events.

Sequential and parallel composition are instances of this construction where
D is set to one of the following:

DΓ,a:A`B
seq = L run

Γ,a:A`B DΓ,a:A`B
par = {Rd a v,Rtn v ∈ L run

Γ,a:A`B}.

We proceed to describe the construction for an abstract D. Let T be an
event structure labelled by L run

Γ,a:A`B and S labelled by L run
Γ`A. A configuration

x ∈ C (S) is a justification of y ∈ C (T ) when

1. if lbl(y) intersects D, then x contains a return event
2. for all t ∈ y with label Rd a v, there exists an event s ∈ x labelled Rtn v.

In particular if lbl(y) does not intersect D, then any configuration of S is a
justification of y. A minimal justification of y is a justification that admits no
proper subset which is also a justification of y. We now define the event structure
S ·D T as follows:

– Events: S ∪ {(x, t) | x ∈ C (S), t ∈ T, x minimal justification for [t]};
– Causality : ≤S ∪ {(x, t), (x′, t′) | x ⊆ x′ ∧ t ≤ t′} ∪ {s, (x, t) | s ∈ x};
– Conflict : the symmetric closure of

#S ∪ {(x, t), (x′, t′) | x ∪ x′ 6∈ C (T ) ∨ t#Bt
′}

∪ {s, (x, t) | {s} ∪ x 6∈ C (S)}.

Lemma 6. S·DT is an event structure, and the following is an order-isomorphism:

〈·, ·〉 : {(x, y) ∈ C (S)× C (T ) | x is a justification of y} ∼= C (S ·D T ).

This event structure is not quite what we want, since it still contains return
events from S and reads on a from T . To remove them, we use the following
general construction. Given a Σ-labelled event structure E and V ⊆ E a set of
visible events, its projection E ↓ V has events V and causality, conflict and
labelling inherited from E. Thus the composition of S and T is:

S �aD T := S ·D T ↓ ({s ∈ S | s not a return} ∪ {(x, t) | t not a read on a}).

As a result S �aD T is labelled over L run
Γ`B as needed.



Probabilistic Programming Inference via Intensional Semantics 17

Dataflow information. We now explain how this construction lifts to dataflow
graphs. Consider dataflow graphs S = (ES , GS , πS : ES → GS) on Γ ` A and
T = (ET , GT , πT : ET → ET ) on Γ, a : A ` B. Given D ⊆ L static

Γ,a:A`B we define

ES·DT = ES ·α−1D ET GS·DT = GS ·D GT

ES�aDT = ES �aα−1D ET GS�aDT = GS �aD GT

Lemma 7. The maps πS and πT extend to rigid maps

πS·DT : ES·α−1DT
→ GS·DT

πS�aDT : ES�a
α−1D

T → GS�aDT

Moreover, if 〈x, y〉 ∈ C (ES·DT ), 〈πS x, πT y〉 is a well-defined configura-
tion of GS·DT . As a result, for 〈x, y〉 ∈ C (GS·DT ), we have a injection ϕx,y :
π−1{〈x, y〉} → π−1{x} × π−1{y} making the following diagram commute:

π−1{〈x, y〉} π−1{x} × π−1{y}

Q(〈x, y〉) Q(x)×Q(y)

ϕx,y

q〈x,y〉

∼=

qx × qy

In particular, ϕx,y is measurable and induces the σ-algebra on π−1{〈x, y〉}. We
write ϕx for the map ϕx,∅, an isomorphism.

Adding probability. At this point we have defined all the components of dataflow
graphs S �aD T and S ·D T . We proceed to make them quantitative.

Observe first that each sampling event of GS·DT (or equivalently of GS�aDT
– sampling events are never hidden) corresponds either to a sampling event of
GS , or to an event (x, t) where t is a sampling event of GT . We consider both
cases to define a family of kernels (kS·DTs ) between the fibres of S ·D T . This will

in turn induce a family (k
S�aDT
s ) on S �aD T .

– If s is a sample event ofGS , we use the isomorphisms ϕ[s) and ϕ[s] of Lemma 7
to define:

k
S�aDT
s (v,X) = kSs (ϕ−1[s) v, ϕ

−1
[s]X).

– If s corresponds to (x, t) for t a sample event of GT , then for every Xx ∈
Σπ−1

S {x}
and Xt ∈ Σπ−1

T {[t)}
we define

k
S�aDT
(x,t) (〈x′, y′〉, ϕ−1x,[t](Xx ×Xt)) = δx′(Xx)× kTt (y′, Xt).

By Lemma 7, the sets ϕ−1x,[t](Xx ×Xt) form a basis for Σπ−1{〈x,[t)}, so that

this definition determines the entire kernel.



18 S. Castellan, H. Paquet

So we have defined a kernel kS·DTs for each sample event s of GS·DT . We move
to the composition (S �aD T ). Recall that the causal history of a configuration
z ∈ C (GS�aDT ) is the set [z], a configuration of GS·DT . We see that hiding does
not affect the fibre structure:

Lemma 8. For any z ∈ C (GS�aDT ), there is a measurable isomorphism ψz :

π−1S�aDT
{z} ∼= π−1S·DT {[z]}.

Using this result and the fact that GS�aDT ⊆ GS·DT , we may define for each
s:

k
S�aDT
s (v,X) = kS·DTs (ψ[s)(v), ψ[s]X).

We conclude:

Lemma 9. S�aDT := (GS�aDT , ES�aDT , πS�aDT , (k
S�aDT
s )) is a quantitative dataflow

graph on Γ ` B.

Multicomposition. By chaining this composition, we can compose on several
variables at once. Given quantitative dataflow graphs Si on Γ ` Ai and T on
Γ, a1 : A1, . . . , an : An ` A we define

(Si)�(ai)
par T := S1 �a1par (. . .�anpar T )

(Si)�(ai)
seq T := S1 �a1seq (. . .�anseq T )

4.2 Interpretation of programs

We now describe how to interpret programs of our language using quantita-
tive dataflow graphs. To do so we follow the same pattern as for the measure-
theoretical interpretation given in § 2.3.

Interpretation of functions. Given a measurable function f : JAK → JBK, we
define the quantitative dataflow graph

Saf =

 ∑
v∈JAK

Rd a v

Rtn (f v)

→
Rd a

Rtn

 .

We then define Jf MKG as JMKG �apar Saf where a is chosen so as not to occur
free in M .

Probablistic actions. In order to interpret scoring and sampling primitives, we
need the following two quantitative dataflow graphs:

score =


∑
r∈R

Rd a r

Sco r

Rtn ()

→

Rd a

Sco

Rtn

 sampled =


∑
r∈Rn

Rd a r

Sam s

Rtn ()

→

Rd a

Sam

Rtn

, kSam





Probabilistic Programming Inference via Intensional Semantics 19

and we define kSam by integrating the density function d; here we identify
Q({Rd a ,Sam}) and π−1{{Rd a ,Sam}}:

kSam({Rd a r}, U) =

∫
q∈U,q(Rd a)=r

d(r, q(Sam))dλ.

We can now interpret scoring and sampling constructs:

Jscore MKG = JMKG �apar score Jsample d (M)KG = JMKG �apar sampled.

Interpretation of tuples and variables. Given a family (ai)i∈I , we define the
dataflow graph tuple(ai:Ai) on a1 : A1, . . . , an : An ` A1 × . . . × An as follows.
Its set of events is the disjoint union⋃

i∈I,v∈JAiK

Rd ai v +
⋃

v∈JA1×...×AnK

Rtn v

where the conflict is induced by Rd ai v Rd ai v
′ for v 6= v′; and causality

contains all the pairs Rd ai v _ Rtn (v1, . . . , vn) where vi = v. Then we form a
quantitative dataflow graph Tuple(ai:Ai), whose dependency graph is tuple(ai:1)
(up to the bijection L run

Γ`A ' L static
Γ ′`1 where Γ ′(a) = 1 for a ∈ dom(Γ )); and the

runtime graph is tuple(ai:Ai), along with the obvious rigid map between them.

We then define the semantics of (M1, . . . ,Mn):

J(M1, . . . ,Mn)KG = (JMiKG)i �(ai)
par Tupleai:Ai ,

where the ai are chosen free in all of the Mj . This construction is also useful to
interpret variables:

JaKG = Tuplea:A where Γ ` a : A.

Interpretation of pattern matching. Consider now a term of the form caseM of

{(i, a) ⇒ Ni}i∈i. By induction, we have that JNiKG is a quantitative dataflow
graph on Γ, a : Ai ` B. Let us write JNiK∗G for the quantitative dataflow graph
on Γ, a : (

∑
i∈I Ai) ` B obtained by relabelling events of the form Rd a v to

Rd a (i, v), and sequentially precomposing with Tuplea:
∑
i∈I Ai

. This ensures that

minimal events in JNiK∗G are reads on a. We then build the quantitative dataflow
graph

∑
i∈IJNiK

∗
G on Γ, a :

∑
i∈I Ai ` B. This can be composed with JMKG :

Jcase M of {(i, a)⇒ Ni}i∈IKG = JMKG �aseq

(∑
i∈I

JNiK∗G

)
.

It is crucial here that one uses sequential composition: none of the branches must
be evaluated until the outcome of M is known.



20 S. Castellan, H. Paquet

Adequacy of composition. We now prove that our interpretation is adequate with
respect to the measure-theoretic semantics described in § 2.3. Given any subset
D ⊆ L static

Γ,a:A`B containing returns and reads on a, we show that the composition
S �aD T does implement the composition of kernels:

Theorem 1. For S a quantitative dataflow graph on Γ ` A and T on Γ, a : A `
B, we have

kernel(S �aD T ) = kernel(T ) ◦ kernel(S) : JΓ K→ JBK.

From this result, we can deduce that the semantics in terms of quantitative
dataflow graphs is adequate with respect to the measure-theoretic semantics:

Theorem 2. For every term Γ `M : A, kernel(JMKG) = JMK.

5 An inference algorithm

In this section, we exploit the intensional semantics defined above and define a
Metropolis-Hastings inference algorithm. We start, in § 5.1, by giving a concrete
presentation of those quantitative dataflow graphs arising as the interpretation of
probabilistic programs; we argue this makes them well-suited for manipulation
by an algorithm. Then, in § 5.2, we give a more formal introduction to the
Metropolis-Hastings sampling methods than that given in § 3.1. Finally, in § 5.3,
we build the proposal kernel on which our implementation relies, and conclude.

5.1 A concrete presentation of probabilistic dataflow graphs

Quantitative dataflow graphs as presented in the previous sections are not easy
to handle inside of an algorithm: among other things, the runtime graph has an
uncountable set of events. In this section we show that some dataflow graphs, in
particular those needed for modelling programs, admit a finite representation.

Recovering fibres. Consider a dataflow graph S = (ES , GS , πS) on Γ ` B. It
follows from Lemma 3 that the fibre structure of S is completely determined
by the spaces π−1S {[s]}, for s ∈ GS , so we focus on trying to give a simplified
representation for those spaces.

First, let us notice that if s is a return or score event, given x ∈ π−1{x}, the
value qx(s) is determined by q|[s). In other words the map π−1{[s]} → Q([s)) is
an injection. This is due to the fact that minimal conflict in ES cannot involve
return or score events. As a result, ES induces a partial function oSs : Q([s)) ⇀
Q(lbl(s)), called the outcome function. It is defined as follows:

oSs (q) =

{
q[s](x

′)(s) if there exists x′ ∈ π−1{x′}, q[s](x′)|[s) = q,

undefined otherwise.

Note that x′ must be unique by the remark above since its projection to
Q([s)) is determined by q. The function oS is partial, because it might be the
case that the event s occurs conditionally on the runtime value on [s).

In fact this structure is all we need in order to describe a dataflow graph:



Probabilistic Programming Inference via Intensional Semantics 21

Lemma 10. Given GS a dependency graph on Γ ` B, and partial functions
(os) : Q([s)) ⇀ Q(lbl(s)) for score and return events of S. There exists a
dataflow graph (ES , GS , πS : ES → GS) whose outcome functions coincide with
the os. Moreover, there is an order-isomorphism

C (ES) ∼= {(x, q) | x ∈ C (GS), q ∈ Q(x),∀s ∈ x, os(q|[s)) = q(s)}.

Adding probabilities. To add probabilities, we simply equip each sample event s
of GS with a density function ds : Q([s))× R⇀ R.

Definition 6. A concrete quantitative dataflow graph is a tuple (GS , (os :
Q([s)) ⇀ Q(lbl(s))), (ds : Q([s)) × R ⇀ R)s∈sample(GS)) where ds(x, ·) is nor-
malised.

Lemma 11. Any concrete quantitative dataflow graph S unfolds to a quantita-
tive dataflow graph unfold S.

We see now that the quantitative dataflow graphs arising as the interpretation
of a program must be the unfolding of a concrete quantitative dataflow graph:

Lemma 12. For any concrete quantitative dataflow graphs S on Γ ` A and
T on Γ, a : A ` B, unfold S �aD Tunfold T is the unfolding of a concrete
quantitative dataflow graph. It follows that for any program Γ ` M : B, JMKG
is the unfolding of a concrete quantitative dataflow graph.

5.2 Metropolis-Hastings

Recall that the Metropolis-Hastings algorithm is used to sample from a density
function d : A→ R which may not be normalised. Here A is a measurable state
space, equipped with a measure λ. The algorithm works by building a Markov
chain whose stationary distribution is D, the probability distribution obtained
from d after normalisation:

∀X ∈ ΣA, D(X) =

∫
x∈X d(x)∫
x∈A d(x)

.

Our presentation and reasoning in the rest of this section are inspired by the
work of Borgström et al. [2].

Preliminaries on Markov chains. A Markov chain on a measurable state space A
is a probability kernel k : A A, viewed as a transition function: given a state
x ∈ A, the distribution k(x, ·) is the distribution from which a next sample state
will be drawn. Usually, each k(x, ·) comes with a procedure for sampling: we
will treat this as a probabilistic program M(x) whose output is the next state.
Given an initial state x ∈ A and a natural number n ∈ N, we have a distribution



22 S. Castellan, H. Paquet

kn(x, ·) on A obtained by iterating k n times. We say that the Markov chain k
has limit the distribution µ on A when

lim
n→∞

||kn(x, ·)− µ|| = 0 where ||µ1 − µ2|| = sup
A∈ΣA

µ1(A)− µ2(A).

For the purposes of this paper, we call a Markov chain k : A → A com-
putable when there exists a type A such that JAK = A (up to iso) and an
expression without scores x : A ` K : A such that JKK = k. (Recall that pro-
grams without conditioning denote probabilistic kernels, and are easily sampled
from, since all standard distributions in the language are assumed to come with
a built-in sampler.)

We will use terms of our language to describe computable Markov chains
language, taking mild liberties with syntax. We assume in particular that pro-
grams may call each other as subroutines (this can be done via substitutions),
and that manipulating finite structures is computable and thus representable in
the language.

The Metropolis-Hastings algorithm. Recall that we wish to sample from a distri-
bution with un-normalised density d : A → R; d is assumed to be computable.
The Markov chain defined by the Metropolis-Hastings algorithm has two pa-
rameters: a computable Markov chain x : A ` P : A, the proposal kernel, and a
measurable, computable function p : A2 → R representing the kernel JP K, i.e.

JP K(x,X ′) =

∫
x′∈X′

p(x, x′) dλ(x′).

The Markov-chain MH(P, p, d) is defined as

MH(P, p, d)(x) := let x′ = P (x) in

let α = min

(
1,
d(x′)× p(x, x′)
d(x)× p(x′, x)

)
in

let u = sample uniform (0, 1) in

if u < α then x′ else x

In words, the Markov chain works as follows: given a start state x, it generates
a proposal for the next state x′ using P . It then computes an acceptance ratio α,
which is the probability with which the new sample will be accepted : the return
state will then either be the original x or x′, accordingly.

Assuming P and p satisfy a number of conditions, the algorithm is correct:

Theorem 3. Assume that P and p satisfies the following properties:

1. Strong irreducibility: There exists n ∈ N such that for all x ∈ A and
X ∈ ΣA such that D(X) 6= ∅ and d(x) > 0, there exists n ∈ N such that
JP Kn(x,X) > 0.

2. JP K(x,X ′) =
∫
x′∈X′ p(x, x

′).
3. If d(x) > 0 and p(x, y) > 0 then d(y) > 0.



Probabilistic Programming Inference via Intensional Semantics 23

4. If d(x) > 0 and d(y) > 0, then p(x, y) > 0 iff p(y, x) > 0.

Then, the limit of MH(P, p, d) for any initial state x ∈ A with d(x) > 0 is equal
to D, the distribution obtained after normalising d.

5.3 Our proposal kernel

Consider a closed program `M : A in which every measurable function is a com-
putable one. Then, its interpretation as a concrete quantitative dataflow graph is
computable, and we write S for the quantitative dataflow graph whose unfolding
is JMKG . Moreover, because M is closed, its measure-theoretic semantics gives a
measure JMK on JAK. Assume that norm(JMK) is well-defined: it is a probabil-
ity distribution on JAK. We describe how a Metropolis-Hastings algorithm may
be used to sample from it, by reducing this problem to that of sampling from
configurations of ES according to the following density:

dS(x, q) :=

 ∏
s∈sample(x)

ds(q(s))

 ∏
s∈score(x)

q(s)

 .

Lemma 10 induces a natural measure on C (ES). We have:

Lemma 13. For all X ∈ ΣC (ES), µ
S(X) =

∫
y∈X

dS(y)dy.

Note that dS(x, q) is easy to compute, but it is not normalised. Computing
the normalising factor is in general intractable, but the Metropolis-Hastings
algorithm does not require the density to be normalised.

Let us write µSnorm(X) = µS(X)
µS(C (ES))

for the normalised distribution. By ade-

quacy, we have for all X ∈ ΣJAK:

normJMK(X) = µSnorm(result−1(X)).

where result : max C (ES) ⇀ JAK maps a maximal configuration of ES to its
return value, if any. This says that sampling from normJMK amounts to sampling
from µSnorm and only keeping the return value.

Accordingly, we focus on designing a Metropolis-Hastings algorithm for sam-
pling values in C (ES) following the (unnormalised) density dS . We start by
defining a proposal kernel for this algorithm.

To avoid overburdening the notation, we will no longer distinguish between
a type and its denotation. Since GS is finite, it can be represented by a type,
and so can C (GS). Moreover, C (ES) is a subset of

∑
x∈C (GS)

Q(x) which is also

representable as the type of pairs (x ∈ C (GS), q ∈ Q(x)). Operations on GS and
related objects are all computable and measurable so we can directly use them in
the syntax. In particular, we will make use of the function ext : C (ES)→ GS+1

which for each configuration (x, q) ∈ C (ES) returns (1, s) if there exists x
s
−−⊂

with os(q|[s)) defined, and (2, ∗) if (x, q) is maximal.
Informally, for (x, q) ∈ C (ES), the algorithm is:



24 S. Castellan, H. Paquet

– Pick a sample event s ∈ x, randomly over the set of sample events of x.
– Construct x0 := x \ {s′ ∈ x | s′ ≥ s} ∪ {s} ∈ C (GS).
– Return a maximal extension (x′, q′) of (x0, q|x0

) by only resampling the sam-
ple events of x′ which are not in x.

The last step follows the single-site MH principle: sample events in x ∩ x′ have
already been evaluated in x, and are not updated. However, events which are in
x′ \ x belong to conditional branches not explored in x; they must be sampled.

We start by formalising the last step of the algorithm. We give a probabilistic
program complete which has three parameters: the original configuration (x, q),
the current modification (x0, q0) and returns a possible maximal extension:

complete(x, q, x0, q0) = case ext(x0, q0) of

(2, ())⇒ (x0, q0)

(1, s)⇒
if s is a return or a score event then

complete(x, v, x0 ∪ {s}, q0[s := os(q0)])

else if s ∈ x
complete(x, q, x0 ∪ {s}, q0[s := q(s)])

else

complete(x, q, x0 ∪ {s}, q0[s := sample d (q0)])

The program starts by trying to extend (x0, q0) by calling ext. If (x0, q0) is
already maximal, we directly return it. Otherwise, we get an event s. To extend
the quantitative information, there are three cases:

– if s is not a sample event, ie. since S is closed it must be a return or a score
event, we use the function os.

– if s is a sample event occurring in x, we use the value in q
– if s is a sample event not occurring in x, we sample a value for it.

This program is recursive, but because GS is finite, there is a static bound on
the number of recursive calls; thus this program can be unfolded to a program
expressible in our language. We can now define the proposal kernel:

PS(x, q) =

let s = sample uniformly over sample events in x in

let r = sample ds (q|[s)) in

let x0 = x \ {s′ ≥ s | s′ ∈ x} in

complete(x, q, x0, q[s := r])

We now need to compute the density for PS to be able to apply Metropolis-
Hastings. Given (x, q), (x′, q′) ∈ C (ES), we define:

pS((x, q), (x′, q′)) =
∑

s∈sample(x)

 qs(v
′|[s))

|sample(x)|
×

∏
s′∈sample(x′\x)

qs′(v|[s′))

 .



Probabilistic Programming Inference via Intensional Semantics 25

Theorem 4. The Markov chain PS and density p satisfy the hypothesis of Theo-
rem 3, as a result for any (x, q) ∈ C (ES) the distribution JMH(dS , PS , pS)

nK((x, q), ·)
tends to µPnorm as n goes to infinity.

One can thus sample from norm(JMK) using the algorithm above, keeping
only the return value of the obtained configuration.

Let us re-state the key advantage of our approach: having access to the data
dependency information, complete requires fewer steps in general, because at
each proposal step only a portion of the graph needs exploring.

6 Conclusion

Related work. There are numerous approaches to the semantics of programs with
random choice. Among those concerned with statistical applications of proba-
bilistic programming are Staton et al. [18, 17], Ehrhard et al. [6], and Dahlqvist
et al. [5]. A game semantics model was announced in [14].

The work of Scibior et al. [16] was influential in suggesting a denotational
approach for proving correctness of inference, in the framework of quasi-Borel
spaces [8]. It is not clear however how one could reason about data dependencies
in this framework, because of the absence of explicit causal information.

Hur et al. [10] gives a proof of correctness for Trace MCMC using new forms
of operational semantics for probabilistic programs. This method is extended to
higher-order programs with soft constraints in Borgström et al. [2]. However,
these approaches do not consider incremental recomputation.

To the best of our knowledge, this is the first work adressing formal correct-
ness of incremental recomputation in MCMC. However, methods exist which
take advantage of data dependency information to improve the performance of
each proposal step in “naive” Trace MCMC. We mention in particular the work
on slicing by Hur et al. [9]; other approaches include [4], [24]. In the present work
we claim no immediate improvement in performance over these techniques, but
only a mathematical framework for reasoning about the structures involved.

It is worth remarking that our event structure representation is reminiscent
of graphical model representation made explicit in some languages. Indeed, for a
first-order language such as the one of this paper, Bayesian networks can directly
be used as a semantics, see [20]. We claim that the alternative view offered by
event structures will allow for an easier extension to higher-order programs, using
ideas from game semantics.

Perspectives. This is the start of an investigation into intensional semantics for
probabilistic programs. Note that the framework of event structures is very flex-
ible and the semantics presented here is by no means the only possible one.
Additionally, though the present work only treats the case of a first-order lan-
guage, we believe that building on recent advances in probabilistic concurrent
game semantics [3, 15] (from which the present work draws much inspiration), we
can extend the techniques of this paper to arbitrary higher-order probabilistic
programs with recursion.



26 S. Castellan, H. Paquet

Acknowledgements. We thank the anonymous referees for helpful comments
and suggestions. We also thank Ohad Kammar for suggesting the idea of us-
ing causal structures for reasoning about data dependency in this context. This
work has been partially sponsored by: EPSRC EP/K034413/1, EP/K011715/1,
EP/L00058X/1, EP/N027833/1, and EP/N028201/1.

References

1. Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.
2. Johannes Borgström, Ugo Dal Lago, Andrew D Gordon, and Marcin Szymczak.

A lambda-calculus foundation for universal probabilistic programming. In ACM
SIGPLAN Notices, volume 51, pages 33–46. ACM, 2016.

3. Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The
concurrent game semantics of probabilistic PCF. In Logic in Computer Science
(LICS), 2018 33rd Annual ACM/IEEE Symposium on, ACM/IEEE, 2018.

4. Yutian Chen, Vikash Mansinghka, and Zoubin Ghahramani. Sublinear approxi-
mate inference for probabilistic programs. stat, 1050:6, 2014.

5. Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Alexandra Silva. Borel kernels
and their approximation, categorically. arXiv preprint arXiv:1803.02651, 2018.

6. Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and
stable, measurable functions: a model for probabilistic higher-order programming.
volume 2, pages 59:1–59:28, 2018.

7. Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Raja-
mani. Probabilistic programming. In Proceedings of the on Future of Software
Engineering, pages 167–181. ACM, 2014.

8. Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient
category for higher-order probability theory. In LICS’17, Reykjavik., pages 1–12,
2017.

9. Chung-Kil Hur, Aditya V Nori, Sriram K Rajamani, and Selva Samuel. Slicing
probabilistic programs. In ACM SIGPLAN Notices, volume 49, pages 133–144.
ACM, 2014.

10. Chung-Kil Hur, Aditya V Nori, Sriram K Rajamani, and Selva Samuel. A prov-
ably correct sampler for probabilistic programs. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 45. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2015.

11. Oleg Kiselyov. Probabilistic programming language and its incremental evaluation.
In Asian Symposium on Programming Languages and Systems, pages 357–376.
Springer, 2016.

12. Oleg Kiselyov. Problems of the lightweight implementation of probabilistic pro-
gramming. In Proceedings of Workshop on Probabilistic Programming Semantics,
2016.

13. Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci.,
22(3):328–350, 1981.

14. Luke Ong and Matthijs Vákár. S-finite kernels and game semantics for probabilistic
programming. In POPL’18 Workshop on Probabilistic Programming Semantics
(PPS), 2018.

15. Hugo Paquet and Glynn Winskel. Continuous probability distributions in con-
current games. Electronic Notes in Theoretical Computer Science, 341:321–344,
2018.



Probabilistic Programming Inference via Intensional Semantics 27

16. Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei
Cai, Klaus Ostermann, Sean K Moss, Chris Heunen, and Zoubin Ghahramani.
Denotational validation of higher-order bayesian inference. Proceedings of the ACM
on Programming Languages, 2(POPL):60, 2017.

17. Sam Staton. Commutative semantics for probabilistic programming. In Program-
ming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages
855–879, 2017.

18. Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar.
Semantics for probabilistic programming: higher-order functions, continuous dis-
tributions, and soft constraints. In Proceedings of LICS ’16, New York, NY, USA,
July 5-8, 2016, pages 525–534, 2016.

19. Luke Tierney. Markov chains for exploring posterior distributions. Annals of
Statistics, 22:1701–1762, 1994.

20. Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An
introduction to probabilistic programming. arXiv preprint arXiv:1809.10756, 2018.

21. David Wingate, Andreas Stuhlmüller, and Noah Goodman. Lightweight implemen-
tations of probabilistic programming languages via transformational compilation.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 770–778, 2011.

22. Glynn Winskel. Event structures. In Advances in Petri Nets, pages 325–392, 1986.
23. Glynn Winskel. Distributed probabilistic and quantum strategies. Electr. Notes

Theor. Comput. Sci., 298:403–425, 2013.
24. Yi Wu, Lei Li, Stuart Russell, and Rastislav Bodik. Swift: Compiled inference for

probabilistic programming languages. arXiv preprint arXiv:1606.09242, 2016.
25. Lingfeng Yang, Patrick Hanrahan, and Noah Goodman. Generating efficient

MCMC kernels from probabilistic programs. In Artificial Intelligence and Statis-
tics, pages 1068–1076, 2014.

A Proofs of § 2

Lemma 1. For Γ `M : A without scores, JMK(γ, JAK) = 1 for each γ ∈ JΓ K.

Proof. By induction on M : probabilistic kernels are stable under composition.

B Proofs of § 3.1

Lemma 3. Consider a dataflow S and x, y, z ∈ C (GS) with x ⊆ y, x ⊆ z, and
y ∪ z ∈ C (GS). If y ∩ z = x, then the space π−1S {y ∪ z} is isomorphic to the set

{(uy, uz) ∈ π−1S {y} × π
−1
S {z} | rx,y(uy) = rx,z(uz)},

with σ-algebra generated by sets of the form {(uy, uz) ∈ Xy × Xz | Xy ∈
Σπ−1

S {y}
, Xz ∈ Σπ−1

S {z}
and rx,y(uy) = rx,z(uz)}.

(For the reader with knowledge of category theory, this says exactly that the
diagram



28 S. Castellan, H. Paquet

π−1S {y ∪ z} π−1S {y}

π−1S {z} π−1S {x}

ry,y∪z

rz,y∪z rx,y

rx,z

is a pullback in the category of measurable spaces.)

Proof. We show that the diagram is a pullback. Consider ϕ : X → π−1{y}
and ψ : X → π−1{z}. We define 〈ϕ,ψ〉 : X → π−1{y ∪ z}, mapping α to
ϕα ∪ ψ α. This is well-defined, first ϕα ∪ ψ α is downclosed. Furthermore, is
there is a minimal conflict s t with s ∈ ϕα and t ∈ ψ α, then we know that
π s = π t, hence since y ∩ z = x, we have s, t ∈ π−1 x, and that means that
s ∈ rx,y(ϕα) = rx,z(ψ α) 3 t. By local injectivity of π we deduce that s = t,
absurd.

Unicity of 〈ϕ,ψ〉 is easy to see. Finally, to show that 〈ϕ,ψ〉 is measurable, we
just use that the simila diagram with Q(·) instead of π−1{·} is also a pullback.

Lemma 5. kernel(S) is an s-finite kernel JΓ K JBK.

Proof. We first notice that k
S[γ]
s is a s-finite kernel π−1{[s)}  π−1{[s]}. From

there, kx,s is a kernel as the lifting of a kernel through a pullback square. This

clearly preseves s-finiteness. Finally µ
S[γ]
x is s-finite as a composition of s-finite

kernels. So we deduce that for every γ ∈ JΓ K, kernel(()S)(γ, ·) is a s-finite mea-

sure. Now, the map γ 7→ k
S[γ]
s is trivially seen to be measurable. This implies

that kernel(()S) is indeed a kernel, hence it is a s-finite kernel.

C Proofs of § 4

C.1 Composition of probablistic event structures

Lemma 6. S·DT is an event structure, and the following is an order-isomorphism:

〈·, ·〉 : {(x, y) ∈ C (S)× C (T ) | x is a justification of y} ∼= C (S ·D T ).

Proof. We check that S ·D T is an event structure. The relation ≤ is clearly
reflexive and antisymmetric. We check transitivity and conflict inheritance.

Transivity The two interesting cases are:
– When s ≤ (x, t) ≤ (x′, t′): then s ∈ x and x ⊆ x′ hence s ∈ x′ and
s ≤ (x′, t′).

– When s ≤ s′ ≤ (x, t): then s ∈ x since x is downclosed and s ≤ (x′, t).
Conflict inheritance There are two interesting cases:

– When s#s′ ≤ (x, t): since s′ ∈ x, we cannot have x ∪ {s} ∈ C (S) hence
s#(x, t)



Probabilistic Programming Inference via Intensional Semantics 29

– When s#(x, t) ≤ (x′, t′): since x ∪ {s} is not a configuration, x′ ∪ {s}
cannot be a configuration either and s#(x′, t′).

We now check the isomorphism. If z ∈ C (S ·D T ), then write x =
⋃
s∈x∩S s. It is

easy to check that x ∈ C (S). Similarly we write y =
⋃

(x,t)∈x t, which is similarly
a configuration of T . We check that x justifies y.

– If there exists t ∈ y such that lbl(t) ∈ D, then we have (x0, t) ∈ z hence
there exists a return event s in x0. Since s ≤ (x0, t) by downclosure we have
s ∈ x as desired.

– Same reasoning as before.

Moreover the map z 7→ (x, y) preserves and reflect the order. Conversely, if we
are given a pair (x, y), for each t ∈ y there exists a unique minimal justification
xt (either x or ∅) of t in x and we can consider z =

⋃
x ∪

⋃
t∈y(xt, t) for the

inverse map.

Lemma 7. The maps πS and πT extend to rigid maps

πS·DT : ES·α−1DT
→ GS·DT

πS�aDT : ES�a
α−1D

T → GS�aDT

Moreover, if 〈x, y〉 ∈ C (ES·DT ), 〈πS x, πT y〉 is a well-defined configura-
tion of GS·DT . As a result, for 〈x, y〉 ∈ C (GS·DT ), we have a injection ϕx,y :
π−1{〈x, y〉} → π−1{x} × π−1{y} making the following diagram commute:

π−1{〈x, y〉} π−1{x} × π−1{y}

Q(〈x, y〉) Q(x)×Q(y)

ϕx,y

q〈x,y〉

∼=

qx × qy

In particular, ϕx,y is measurable and induces the σ-algebra on π−1{〈x, y〉}. We
write ϕx for the map ϕx,∅, an isomorphism.

Proof. We focus the proof on S �aD T , the reasoning is similar for S ·D T .
We first show that if 〈x, y〉 correponds to a configuration of ES �aD ET , then

〈πS x, πT y〉 corresponds to a configuration of GS �aD GT :

– Consider an event πT (t) ∈ πT y whose label is D. By construction the label
of t is in α−1D hence there exists a return event in s ∈ x, and πS s is a
return event of πS x as desired. If furthermore the label of πT t is Rd v , then
the label of t must be Rtn v′ with α v′ = v and we can conclude.

– If there exists a return event in πS x, then there must be a return event in
x as well and y must contain an event t labelled in α−1D. Hence πT t is
labelled in D as desired.

– Same reasoning as before.



30 S. Castellan, H. Paquet

Let us define πS�aDT as follows:

πS�aDT : ES�aDT → GS�aDT

s ∈ ES 7→ πS s

(x, t) 7→ (πSx, πT t)

This is well-defined: indeed if (x, [t]) is a composition pair, then πT [t] = [πT t]
by rigidity and (πS x, [πT t]) is also a composition pair. Furthermore if x′ ⊆ πS x
is a smaller justification, then π−1S x′ (well-defined by rigidity again) would be a
smaller justification of [t]. Rigidity is a routine check.

Lemma 8. For any z ∈ C (GS�aDT ), there is a measurable isomorphism ψz :

π−1S�aDT
{z} ∼= π−1S·DT {[z]}.

Lemma 9. S�aDT := (GS�aDT , ES�aDT , πS�aDT , (k
S�aDT
s )) is a quantitative dataflow

graph on Γ ` B.

Lemma 4. If x
s1
−−⊂x1 and x

s2
−−⊂x2 are concurrent extensions of x ( i.e. s1 and

s2 are not in conflict), then k
S[γ]
x1,s2 ◦ k

S[γ]
x,s1 = k

S[γ]
x2,s1 ◦ k

S[γ]
x,s2 .

Proof. We know that the measurable space π−1(x1 ∪ x2) is the pullback along
the two inclusions x ⊆ x1 and x ⊆ x2. This implies that given v ∈ π−1(x), the
measurable space obtained by the preimage of r−1x,x1∪x2

(v) is generated by the
rectangles 〈X1, X2〉 where Xi ∈ π−1{xi} ∩ r−1x,xi(v).

Hence given v ∈ π−1{x}, we have that for any rectangle:

kx1,s2 ◦ kx,s1(v, 〈X1, X2〉) =

∫
v′∈π−1{x1}

kx1,s2(v′, X)kx,s1(v,dv′)

=

∫
v′∈rx1,x1∪x2 (X)

kx,s2(rx,x1
v′, X2)kx,s1(v,dv′)

= kx,s2(v,X2)k(v,X1)

Hence by symmetry we have kx1,s2◦kx,s1(v, 〈X1, X2〉) = kx2,s1◦kx,s2(v, 〈X1, X2〉)
which implies the desired result.

C.2 Adequacy of composition

We now prove that the kernel of a composition is the composition of a kernel.
For that, we need a few intermediate result. In this section, we assume S a
quantitative dataflow graph on Γ ` A and T on Γ, a : A ` B as well as a
suitable subset D.

Lemma 14. We have a bijection max(S �aD T ) ' max(S)×max(T ).



Probabilistic Programming Inference via Intensional Semantics 31

Proof. A maximal element of S�aDT is of the form (x, t) where x is maximal in S,
ie. of the form [r] and t maximal in T , ie. a return event. The map (x, t) 7→ (r, t)
is clearly injective. Given (rS , rT ) ∈ max(S) ×max(T ), ([rS ], rT ) is the desired
maximal event of S �aD T .

Lemma 15. If ([rS ], rT ) is a maximal in S �aD T , then we have for all γ ∈ JΓ K
and X ∈ ΣJBK:

µ
(S�aDT )[γ]

〈[rS ],rT 〉 (o−1([rS ],rT )
(X)) =

∫
a∈JAK

µ
T [γ,a]
[rT ]

(o−1rT (X))µ
S[γ]
[rS ]

(o−1rS (da)).

Proof. We use the fact that the distribution induced by a configuration is com-
positional: since we have the inclusions: ∅ ⊆ 〈[rS ], ∅〉 ⊆ 〈[rS ], [rT ]〉, we have:

µ
(S�aDT )[γ]

〈[rS ],rT 〉 (o−1([rS ],rT )
(X)) =

(
k
(S�aDT )[γ]

〈[rS ],∅〉,〈[rS ],[rT ]〉 ◦ k
(S�aDT )[γ]

∅,〈[rS ],∅〉

)
(o−1([rS ],rT )

(X))

=

∫
v∈π−1〈[rS ],∅〉

k
(S�aDT )[γ]

〈[rS ],∅〉,〈[rS ],[rT ]〉(v, o
−1
([rS ],rT )

(X))× µ(S�aDT )[γ]

〈[rS ],∅〉 (dv)

We are almost there. First, we have π−1〈[rS ], ∅〉 ∼= 〈π−1[rS ], ∅〉 ∼= π−1[rS ], we
will leave this isomorphism silent for the sake of clarity. Then, remark that, up
to this isomorphism we have

µ
(S�aDT )[γ]

〈[rS ],∅〉 = µ
S[γ]
[rS ]

.

and also, that

k
(S�aDT )[γ]

〈[rS ],∅〉,〈[rS ],[rT ]〉(v, o
−1
([rS ],rT )

(X)) = k
T [γ,or(v)]
[rT ]

(o−1rT (X)).

By substitution, we are one change of variable away:

µ
(S�aDT )[γ]

〈[rS ],rT 〉 (o−1([rS ],rT )
(X)) =

∫
v∈π−1[rS ]

k
T [γ,or(v)]
[rT ]

(o−1rT (X))× µS[γ][rS ]
(dv)

=

∫
a∈o−1

r (π−1[rS ])

k
T [γ,a]
[rT ]

(o−1rT (X))× µS[γ][rS ]
(o−1r (da))

=

∫
a∈JAK

k
T [γ,a]
[rT ]

(o−1rT (X))× µS[γ][rS ]
(o−1r (da))

Theorem 1. For S a quantitative dataflow graph on Γ ` A and T on Γ, a : A `
B, we have

kernel(S �aD T ) = kernel(T ) ◦ kernel(S) : JΓ K→ JBK.



32 S. Castellan, H. Paquet

Proof. By Lemma 14 and Lemma 15, we have:

kernel(S �aD T )(γ,X) =
∑

r∈max(S�aDT )

µ
(S�aDT )[γ]

[r] (o−1r (X))

=
∑

rS∈maxS,rT∈maxT

µ
(S�aDT )[γ]

〈[rS ],[rT ]〉 (o−1([rS ],rT )
(X))

=
∑

rS∈maxS,rT∈maxT

∫
a∈JAK

µ
T [γ,a]
[rT ]

(o−XrT (X))× µS[γ][rS ]
(o−1rS (da))

=

∫
a∈JAK

(∑
rT∈T

µ
T [γ,a]
[rT ]

(o−XrT (X))

)( ∑
rS∈maxS

µ
S[γ]
[rS ]

(o−1rS (da))

)

=

∫
a∈JAK

kernel(T )((γ, a), X)× kernel(S)(γ,da)

= (kernel(T ) ◦ kernel(S))(γ,X)

Theorem 2. For every term Γ `M : A, kernel(JMKG) = JMK.

Proof. For most cases, the proof directly relies on Theorem 1, and simple calcu-
lation, such that kernel(Sf ) = f̄ where f̄ is the lift of f : JAK→ JBK to a kernel
JAK JBK. The only interesting case is that of pairing.

Consider a term of the form case M of {(i, x)⇒ Ni}i∈I . First, it is easy
to see that

kernel(JNiK∗)(γ,X) =

{
kernel(JNiK)(γ[a := a′], X) γ(a) = (i, a′)

0 otherwise

and

kernel(
∑

JNiK∗(γ,X)) =
∑
i∈I

kernel(JNiK∗)(γ,X).

From this equality and Theorem 1, the desired result follows.

D Proofs of § 5

D.1 Concrete quantitative dataflow graphs

Lemma 10. Given GS a dependency graph on Γ ` B, and partial functions
(os) : Q([s)) ⇀ Q(lbl(s)) for score and return events of S. There exists a
dataflow graph (ES , GS , πS : ES → GS) whose outcome functions coincide with
the os. Moreover, there is an order-isomorphism

C (ES) ∼= {(x, q) | x ∈ C (GS), q ∈ Q(x),∀s ∈ x, os(q|[s)) = q(s)}.



Probabilistic Programming Inference via Intensional Semantics 33

Proof. Say that q ∈ Q(x) for x ∈ C (GS) is reachable when for all s ∈ x,
os(q|[s)) = q(s). The events of ES are pairs (s, q) of an event s ∈ S and q ∈
Q([s]) reachable. Causality is pairwise conflict and (s, q)#(s′, q′) when s#s′

or q(s0) 6= q′(s0) for s0 ∈ [s] ∩ [s′]. The labelling is the obvious thing. It is
straightforward to check that this is an event structure and that (s, q) 7→ s is a
rigid map ES → GS such that (ES , GS , πS) is a dataflow graph with outcome
function os. The characterisation of the configurations follows directly from the
configuration.

Lemma 11. Any concrete quantitative dataflow graph S unfolds to a quantita-
tive dataflow graph unfold S.

Proof. Straightforward, for every sample event s let

ks(x
′, q−1x U) =

∫
q∈U

δqx(x′)⊆q × ds(qx(x′), q(s)).

Lemma 12. For any concrete quantitative dataflow graphs S on Γ ` A and
T on Γ, a : A ` B, unfold S �aD Tunfold T is the unfolding of a concrete
quantitative dataflow graph. It follows that for any program Γ ` M : B, JMKG
is the unfolding of a concrete quantitative dataflow graph.

Proof. Given (Gs, o
S , kS) and (GT , o

T , kT ), we define:

– if s ∈ Gs is a score or return event:

o
S�aDT
s (q) = oSs (ϕ q) where ϕs : π−1S�aDT

〈[s), ∅〉 ∼= π−1S [s)

– If s ∈ GS is a sample event, we define

d
S�aDT
s (q, r) = dSs (ϕ q, r)

– If (x, t) ∈ GS�aDT is a score or return event, we let:

o
S�aDT
(x,t) (q) = oTt (ψ q) where ψt : π−1S�aDT

〈x, [t)〉 → π−1T [t)

– If (x, t) ∈ GS�aDT is a sample event:

d
S�aDT
(x,t) (q, r) = dTt (ψt q, r)

It is straightforward to see that (GS �aD GT , oS�
a
DT, dS�

a
DT ) is a concrete prob-

abilistic graph whose unfolding is unfold S �aD unfold T .

D.2 Metropolis-hastings

Lemma 1. For Γ `M : A without scores, JMK(γ, JAK) = 1 for each γ ∈ JΓ K.



34 S. Castellan, H. Paquet

Correction of the Metropolis-Hastings algorithm We now focus on the
proof of Theorem 3. Remember that we assume a program x : X ` Q : X and a
measurable computable function q : X2 → R such that

JQK(x, Y ) =

∫
y∈Y

q(x, y)dy

We assume moreover a computable density function d : X→ R and write D
the distribution defined by d:

D(X) =

∫
x∈X

d(x)dx.

First, let us define abstractly the transition kernel of the Metropolis-Hastings
Markov chain. Consider M : X  X a markov chain with density m : X2 → R.
Such a pair (M,m) is (D, d)-valid when it satisfies the assumptions (3) and (4)
of Theorem 3 namely:

1. if d(x) > 0 and m(x, y) > 0 then m(y) > 0
2. if d(x)d(y) > 0 then m(x, y) > 0 iff m(y, x) > 0.

We define the metropolis-hastings kernel as follows

αm(x, x′) = min(1,
d(y) ·m(y, x)

d(x) ·m(x, y)

MHM,m(x, Y ) =

∫
y∈Y

αm(x, y) ·M(x,dy)

+ [x ∈ X] ·
∫
y∈Y

(1− αm(x, y))M(s,dy).

Let us first compute the transition kernel of the Markov chain MH(Q, q, d),
and show it coincides with the usual definition:

Lemma 16. We have JMH(Q, q, d)K = MHJQK,q.

Proof. A simple unfolding of the definition of the measure-theoretic semantics.

As a result, we can apply the results of Tierney [19].

Lemma 17 (From [19], Theorem 1 and Corollary 2). If there exists n ∈ N
such that MHnM,m is D-strongly irreductible then MHkM,m(x, ·) converges towards
the distribution D for any x ∈ X with d(x) > 0, ie.

lim
k→∞

||MHkM,m(x, ·)−D|| = 0.

To prove Theorem 3, we need to show that if Mn is D-strongly irreductible,
then so is MHnM,m. Let us define the partial Metropolis-Hastings kernel WM,m :
X X

WM,m(x, Y ) =

∫
y∈Y

αm(x, y)×M(x, dy) =

∫
y∈Y

αm(x, y)×m(x, y)dy.

It is straightforward to see that:



Probabilistic Programming Inference via Intensional Semantics 35

– If WM,m(x, Y ) > 0 implies MHM,m(x, Y ) > 0: as a result WJQK D-strongly
irreductible implies that MHM,m is.

– By (D, d)-validity, it is easy to see that m(x, y) > 0 implies αm(x, y) > 0,
hence M(x, Y ) > 0 implies WM,m(x, Y ) > 0.

– WM,m has density wM,m(x, y) = αm(x, y)×m(x, y).

If we have two markov chains M1,M2 : X X remember that their compo-
sition has density m1 ⊗m2(x, z) =

∫
y∈Xm1(x, y)m2(y, z)dy.

Lemma 18. Consider ((Mk,mk)) a family of (D, d)-valid markov chains equipped
with density. If the composition Wn ◦ . . . ◦W1 is strongly irreducible, then so is
WMn,mn ◦ . . . ◦WM1,m1

.

Proof. We show the case for n = 2 but the reasoning is the same for arbitrary
n.

Consider x ∈ X with nonzero density and Z ∈ ΣX with D(Z) > 0. We have

(WM2,m2
◦WM1,m1

)(x, Z) =

∫
z∈Z

∫
y∈Y

αm1
(x, y)αm2

(y, z)m1(x, y)m2(y, z)dzdy

=

∫
(z,y)∈C

αm1
(x, y)αm2

(y, z)m1(x, y)m2(y, z)dzdy

where C is defined as the set of (z, y) ∈ Z ×X such that m1(x, y)m2(y, z). Since
(M2 ◦M1)(x, Z) =

∫
(z,y)∈C m1(x, y)m2(y, z)dzdy > 0 we know that this set has

nonzero mesure (on the product measure of D with itself), and that m1(x, y)
and m2(y, z) is nonzero for (z, y) ∈ C. By d-validity this implies that αm1(x, y)
and αm2

(y, z) are nonzero as well hence the whole integral is nonzero, as desired.

Theorem 3. Assume that P and p satisfies the following properties:

1. Strong irreducibility: There exists n ∈ N such that for all x ∈ A and
X ∈ ΣA such that D(X) 6= ∅ and d(x) > 0, there exists n ∈ N such that
JP Kn(x,X) > 0.

2. JP K(x,X ′) =
∫
x′∈X′ p(x, x

′).

3. If d(x) > 0 and p(x, y) > 0 then d(y) > 0.

4. If d(x) > 0 and d(y) > 0, then p(x, y) > 0 iff p(y, x) > 0.

Then, the limit of MH(P, p, d) for any initial state x ∈ A with d(x) > 0 is equal
to D, the distribution obtained after normalising d.

Proof. We know that JQKn is strongly irreducible and (JQK, q) is (D, d)-valid.
As a result MH(Q, q, d)n is strongly irreducible by Lemma 18, which entails the
result by Lemma 17.

Lemma 19. The kernel JPSK has density pS.



36 S. Castellan, H. Paquet

Proof. Let us first show that JcompleteK has density:

qcomplete(x, v, x0, v0, y, v
′) =


∏

s∈sampley\(x0∪x)

ds(v
′(s)) x0 ⊆ y ∧ v ⊆ v′

0 otherwise

The 0 clause is easy to see. Otherwise if x0 ⊆ y and v ⊆ v′, we prove the
result by induction on the size of y \ x0. If there are no sample in y outside
x0 ∪ x, then it is clear that the density of (y, v′) is 1 (no probabilistic choice).
Otherwise, to go from (x0, v0) to (y, v′), it means we have sampled a s ∈ y with
exactly the same value as in v′, and then continued, so we have:

qcomplete(x, v, x0, v0, y, v
′) = ds(v

′(s))× qcomplete(x, v, x0 ∪ {s}, v0[s := v′(s)]).

which entails the desired equation.
From the formula for complete, it is easy to establish the formula for qS .

Theorem 4. The Markov chain PS and density p satisfy the hypothesis of Theo-
rem 3, as a result for any (x, q) ∈ C (ES) the distribution JMH(dS , PS , pS)

nK((x, q), ·)
tends to µPnorm as n goes to infinity.

Proof. Strong-irreducibility. Take n to be the size of GS . Let (x, v) ∈ E
and Y ∈ ΣE with dS(Y ) > 0. Consider Y0 the subset of Y of elements with
nonzero. We must also have d(Y0) > 0. For each (y, v′) ∈ Y0, we show that
qkS((x, v), (y′, v′)) > 0 for k the number of elements of y which are not in x or
such that v(s) 6= v′(s). Since k ≤ n this implies the result

– If x = y, then clearly, we can take any sample event s with value r in x,
resample it with the same value, and that shows that q(x, y) has density
ds(r) > 0.

– Consider a minimal event s ∈ y \ x. We can resamble it to the value v′(s)
with density ds(v

′(s)) and then extend it to a maximal configuration (y′, v′).
By construction, (y′, v′) is closer to (v, y) and we can conclude by induction.

The fact that qS is the density of QS is a consequence of Lemma 19. Property
(3) and (4) are easy to establish.


