
MFPS 2013

Strategies as Concurrent Processes

Simon Castellana Jonathan Haymana Marc Lassonb

Glynn Winskela

a Computer Laboratory, University of Cambridge

b PPS, Université Paris Diderot - Paris 7

Abstract

Concurrent strategies are shown to support operations yielding an economic yet rich higher-order con-
current process language, which shares features both with process calculi and nondeterministic dataflow.
Its operational semantics and ‘may and must’ equivalence require that we take internal (neutral) moves
seriously, leading to the introduction of ‘partial strategies’ which may contain neutral moves. Through
partial strategies, we can present a transition semantics for a language of strategies and can formulate their
‘may and must’ behaviour. While partial strategies compose, in a way extending that of strategies, in
general composition introduces extra neutral moves; in particular, copy-cat is no longer strictly an identity
w.r.t. composition. However, a simple extension of concurrent strategies (with stopping configurations)
maintains the fact that they form a bicategory while still capturing ‘may and must’ behaviour.

1 Introduction

There are several reasons for extending games and strategies, with behaviour based

on trees, to concurrent games and strategies, based on event structures — the con-

current analogue of trees. One reason is to provide a foundation for a generalized

domain theory, in which concurrent games and strategies take over the roles of do-

mains and continuous functions. The motivation is to repair the divide between

denotational and operational semantics and tackle anomalies like nondeterministic

dataflow, which are beyond traditional domain theory. Another is that strategies

are as potentially fundamental as relations and functions. It is surely because of

our limited mental capacity, and not because of its unimportance, that the mathe-

matical concept of strategy has been uncovered relatively late. It is hard to think

about the successive contingencies involved in playing a game in the same way that

is hard to think about interacting processes. Developing strategies in the extra

generality demanded by concurrency reveals more clearly their essential nature and

enables us to harness computer-science expertise in structure and concurrency in

their understanding and formalization.

The extra generality of concurrency reveals new structure and a mathematical

robustness to the concept of strategy, in particular showing strategies are essentially

special profunctors [15]. Profunctors themselves provide a rich framework in which

to generalize domain theory, in a way that is arguably closer to that initiated by

Dana Scott than game semantics [6,2]. However, the mathematical abstraction

of profunctors comes at a price: it can be hard to give an operational reading to

denotations as profunctors. There are examples of semantics of higher-order process

languages and “strong correspondence” where elements of profunctor denotations

correspond to derivations in an operational semantics [8,12]. But in general it is

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Castellan, Hayman, Lasson and Winskel

hard to extract operational semantics from the profunctor denotations alone because

they have abstracted too far.

In this paper, we begin a study of concurrent strategies from the perspective of

concurrent processes, considering how concurrent games and strategies are objects

which we can program. They are shown to support operations yielding an economic

yet rich higher-order concurrent process language, which shares features both with

process calculi and nondeterministic dataflow.

Indeed, seen from a concurrent-process perspective, in some respects concurrent

strategies have abstracted too far. Both in obtaining a transition semantics for the

language of strategies and in analysing its behaviour w.r.t. ‘may and must’ testing,

we need to take internal (neutral) moves, introduced in the composition of strategies,

seriously. Through the more refined model of partial concurrent strategies we obtain

a correspondence between events of a strategy and derivations of atomic steps in

a transition semantics. Via partial strategies we can justify a simple extension of

concurrent strategies (with stopping configurations) which maintains the fact that

they form a bicategory, while still capturing ‘may and must’ behaviour.

2 Event structures and their maps

An event structure comprises (E,Con,≤), a set E of events which are partially

ordered by ≤, the causal dependency relation, and a nonempty consistency relation

Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E {e} ∈ Con for all e ∈ E

Y ⊆X ∈ Con Ô⇒ Y ∈ Con X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The configurations, C∞(E), of an event structure E consist of those subsets x ⊆ E
which satisfy ∀X ⊆ x. X is finite ⇒ X ∈ Con (consistency) and ∀e, e′. e′ ≤ e ∈
x Ô⇒ e′ ∈ x. (down-closure). Often we shall be concerned with just the finite

configurations of an event structure. We write C(E) for the finite configurations of

an event structure E.

We say an event structure is elementary when the consistency relation consists of

all finite subsets of events. Two events which are both consistent and incomparable

w.r.t. causal dependency in an event structure are regarded as concurrent. In games

the relation of immediate dependency e _ e′, meaning e and e′ are distinct with

e ≤ e′ and no event in between, will play a very important role. For X ⊆ E we

write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X; note if X ∈ Con, then

[X] ∈ Con. We write [a] for [{a}] where a ∈ E. For configurations x, y, we use

x−⊂y to mean y covers x, i.e. x ⊂ y with nothing in between, and x
e−Ð⊂ y to mean

x ∪ {e} = y for an event e ∉ x. We sometimes use x
e−Ð⊂ , expressing that event e is

enabled at configuration x, when x
e−Ð⊂ y for some configuration y.

Certain ‘structural’ maps of event structures, which have a long history [11], play

a key role in the development of nondeterministic concurrent strategies. A map of

event structures f ∶ E → E′ is a partial function f ∶ E ⇀ E′ such that fx ∈ C∞(E′)
for all x ∈ C∞(E), and for all e1, e2 ∈ x

f(e1) = f(e2) & f(e1), f(e1) both defined Ô⇒ e1 = e2 .

2

Castellan, Hayman, Lasson and Winskel

Above, it is sufficient to restrict to finite configurations. Note that, when f is total,

it restricts to a bijection x ≅ fx for any x ∈ C∞(E). A total map is rigid when it

preserves causal dependency.

A map f ∶ E → E′ of event structures has partial-total factorization as a com-

position E
pÐ→E ↓ V tÐ→E′ where V =def {e ∈ E ∣ f(e) is defined} is the domain of

definition of f ; the event structure E↓V =def (V,≤V ,ConV), where v ≤V v′ iff v ≤
v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V ; the partial map p ∶ E → E ↓V
acts as identity on V and is undefined otherwise; and the total map t ∶ E ↓V → E′,
called the defined part of f , acts as f . The event structure E↓V is the projection of

E to V .

It shall be convenient to construct event structures using rigid families.

Proposition 2.1 Let Q be a non-empty family of finite partial orders closed under

rigid inclusions, i.e. if q ∈ Q and q′ ↪ q is a rigid inclusion (regarded as a map

of elementary event structures) then q′ ∈ Q. The family Q determines an event

structure Pr(Q) =def (P,≤,Con) as follows:

● the events P are primes, i.e. finite partial orders in Q with a top element;

● the causal dependency relation p′ ≤ p holds precisely when there is a rigid inclusion

from p′ ↪ p;

● a finite subset X ⊆ P is consistent, X ∈ Con, iff there is q ∈ Q and rigid inclusions

p↪ q for all p ∈X.

If x ∈ C(P) then ⋃x, the union of the partial orders in x, is in Q. The function

x↦ ⋃x is an order-isomorphism from C(P), ordered by inclusion, to Q, ordered by

rigid inclusions.

Pullbacks of total maps Maps f ∶ A → C and g ∶ B → C have

pullbacks in the category of event structures, and are simple to

describe in the case where f and g are total. In this situation,

finite configurations of P correspond to the composite bijections

Pπ1
}}

π2
!!

A

f
!!

B
g}}

C .

θ ∶ x ≅ fx = gy ≅ y
between configurations x ∈ C(A) and y ∈ C(B) s.t. fx = gy for which the transitive

relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′ is a partial order; the

correspondence taking z ∈ C(P) to the composite bijection π1z ≅ fπ1z = gπ2z ≅ π2z

respects inclusion.

2.1 Affine maps

In considering the dynamics of processes we shall need to relate a process to a process

it may become. For this we generalize the earlier structural maps of event structures

to affine maps, in which we need no longer preserve the empty configuration [13].

Definition 2.2 Let A be an event structure. Let x ∈ C∞(A). Write A/x for the

event structure which remains after the occurrence of x. Precisely, A/x comprises

● events, {a ∈ A ∖ x ∣ x ∪ [a]A ∈ C∞(A)} ,
● consistency relation, X ∈ Con iff X ⊆fin A/x & x ∪ [X]A ∈ C∞(A), and

● causal dependency, the restriction of that on A.

3

Castellan, Hayman, Lasson and Winskel

We extend the notation to configurations regarding them as elementary event

structures. If y ∈ C∞(A) with x ⊆ y then by y/x we mean the configuration y ∖ x ∈
C∞(A/x). In the case of a singleton configuration {a} of A — when a is an initial

event of A — we shall often write A/a and x/a instead of A/{a} and x/{a}.

An affine map of event structures f from A to B comprises a pair (f0, f1) where

f0 ∈C(B) and f1 is a map of event structures f1 ∶ A→ B/f0. It determines a function

from C(A) to C(B) given by fx = f0 ∪ f1x for x ∈ C(A). The allied f0 and f1 can

be recovered from the action of f on configurations: f0 = f∅ and f1 is that unique

map of event structures f1 ∶ A → B/f∅ which on configurations x ∈ C(A) returns

fx/f∅. It is simplest to describe the composition gf of affine maps f = (f0, f1) from

A to B and g = (g0, g1) from B to C in terms of its action on configurations: the

composition takes a configuration x ∈C(A) to g(f x). Alternatively, the composition

gf can be described as comprising (g0∪g1f0, h) where h is that unique map of event

structures h ∶ A → C/(g0 ∪ g1f0) which sends x ∈ C(A) to g1(f0 ∪ f1x)/g1f0. Note

that traditional maps can be identified with those special affine maps (f0, f1) in

which f0 = ∅. We reserve the term ‘map’ for the traditional structural maps of

event structure and shall say explicitly when a map is affine.

3 Concurrent games and strategies

A game is represented by an event structure A in which an event a ∈ A carries

a polarity pol(a), + for Player and − for Opponent. Maps and affine maps of

event structures extend to event structures with polarity: their underlying partial

functions on events are required, where defined, to preserve polarity. A number of

constructions on games will play an important role in the coming semantics:

Dual A⊥, of an event structure with polarity A is a copy of the event structure A

with a reversal of polarities.

Simple parallel composition A∥B , by juxtaposition. Its unit is the empty game

∅. More generally, we can define, ∥i∈IAi, the simple parallel composition of a

indexed family of games, in which the set of events comprises the disjoint union

⋃1≤i≤m {i} ×Ai.
Sums and recursive definitions Sums Σi∈IAi of an indexed family of games,

which coincide with coproducts in the categories of event structures, are obtained

in a similar way to simple parallel compositions, but now with events from dis-

tinct components being inconsistent (i.e. no set in the consistency relation contains

elements from distinct components). We shall not make explicit use of recursively-

defined games, but they are dealt with in exactly the same way as recursively-defined

event structures [11].

3.1 A bicategory of games and strategies

A (nondeterministic concurrent) strategy in a game A is represented by a total map

of event structures σ ∶ S → A which preserves polarities and is

Receptive: if σx
a−Ð⊂ & polA(a) = − then there is unique s ∈ S s.t. x

s−Ð⊂ & σ(s) = a;

Innocent: if s _S s
′ & (pol(s) = + or pol(s′) = −) then σ(s) _A σ(s′).

Receptivity expresses that Player cannot hinder moves of Opponent, while in-

4

Castellan, Hayman, Lasson and Winskel

nocence says a strategy should only adjoin immediate causal dependencies of the

form ⊖ _ ⊕. A map between strategies from σ ∶ S → A to σ′ ∶ S′ → A is a total

map f ∶ S → S′ of event structures with polarity such that σ = σ′f . Accordingly,

the strategies are isomorphic iff f is an isomorphism of event structures.

The conditions of receptivity and innocence are necessary and sufficient to ensure

that the copy-cat strategy behaves as identity w.r.t. composition [9], which we now

proceed to define.

We follow Conway and Joyal, and define a strategy from a game A to a game B,

written σ ∶ A + //B, as a strategy σ in the game A⊥∥B.
Let σ ∶ S → A⊥∥B, τ ∶ T → B⊥∥C be strate-

gies. Their composition is defined via the pullback

drawn to the right. Ignoring polarities, the com-

posite partial map has defined part T⊙S, which

yields the composition of strategies τ⊙σ ∶ T⊙S →
A⊥∥C once polarities are reinstated.

A ∥ T
A∥τ
''

P

π2 ;;

π1 ##

A ∥ B ∥ C //A ∥ C

S ∥ C σ∥C
77

Let A be a game. The copy-cat strategy from A to A is a total map γA ∶ CCA →
A⊥∥A, based on the idea that Player moves, of +ve polarity, always copy previous

corresponding moves of Opponent, of −ve polarity. For c ∈ A⊥∥A we use c to mean

the corresponding copy of c, of opposite polarity, in the alternative component.

Define CCA to comprise the event structure with polarity A⊥∥A together with extra

causal dependencies c ≤CCA c for all events c with polA⊥∥A(c) = +. A finite subset of

CCA is consistent if its down-closure is consistent in A⊥∥A.

The characterisation of configurations of CCA reveals an important partial order

on configurations of A. Let x and y be configurations of an event structure with

polarity. Write x ⊆− y to mean x ⊆ y and pol(y ∖ x) ⊆ {−}, i.e. the configuration y

extends the configuration x solely by events of −ve polarity. Similarly, x ⊆+ y means

x ⊆ y and pol(y ∖ x) ⊆ {+}. Use ⊇− to denote the converse order to ⊆−. Define the

Scott order on configurations by x ⊑ y iff x ⊇− ⋅ ⊆+ ⋅ ⊇− ⋯ ⊇− ⋅ ⊆+ y . Then, ⊑ is a

partial order and part of a factorization system: if x ⊑ y then ∃!z. x ⊇− z ⊆+ y.

Proposition 3.1 [15] Let A be a game. Then, x ∈ C(CCA) iff x2 ⊑A x1 , where

x1 ∈ C(A⊥) and x2 ∈ C(A) are the projections of x ∈ C(A⊥∥A) to its components.

Theorem 3.2 [15] Strategies σ ∶ S → A correspond to discrete fibrations σ“ ∶
(C(S),⊑S) → (C(A),⊑A) , preserving ⊇−, ⊆+ and ∅.

The theorem says we can view strategies in a game as (certain) discrete fibra-

tions, so equivalently as presheaves over finite configurations with the Scott order.

In particular, a strategy from a game A to a game B corresponds to a presheaf over

(C(A⊥∥B),⊑A⊥∥B) ≅ (C(A),⊑A)op × (C(B),⊑B), so to a profunctor from (C(A),⊑A)
to (C(B),⊑B). This correspondence yields a lax functor from strategies to profunc-

tors. The view of strategies as (special) profunctors — explained further in [15] —

will guide our later work.

We obtain a bicategory of concurrent games and strategies in which the ob-

jects are event structures with polarity — the games, the arrows from A to B are

strategies σ ∶ A + //B and the 2-cells are maps of strategies. The vertical composi-

tion of 2-cells is the usual composition of maps. Horizontal composition is given

by the composition of strategies ⊙ (which extends to a functor on 2-cells via the

5

Castellan, Hayman, Lasson and Winskel

universality of pullback).

A strategy in the game A⊥∥B corresponds to a strategy in the game (B⊥)⊥∥A⊥.
Hence a strategy A + //B corresponds to a dual strategy B⊥ + //A⊥. The bicategory

is rich in structure, in particular, it is compact-closed (so has a trace, a feedback

operation).

3.2 Operations on strategies and duplication

Beyond composition there are many other useful operations on strategies. Several of

these have appeared previously in, for example, establishing determinacy [3] or the

value theorem for games with pay-off [4] where proofs often hinge on constructing

appropriate strategies.

We can form the sum of strategies []i∈I σi of a family of strategies σi ∶ Si → A,

i ∈ I, in a common game A [4]. This is formed as the sum of the event structures

Si but where the initial −ve events are identified to maintain receptivity. A sum of

strategies only commits to a particular component strategy once a Player move is

made there. The empty sum � essentially comprises the initial segment of the game

A consisting of all the initial −ve events of A.

The pullback of a strategy σ across a (possibly partial)

map f of event structures is itself a strategy f∗σ [14]:

S′
f∗σ ��

//S
σ��

A
f
//B .

This operation can adjoin extra events and causal links to the original strategy; it

subsumes, for example, operations on strategies in which we prefix an initial event.

We shall also use a previously unnoticed strategy δA that exists from a game

A to A∥A, and expresses a form of duplication. Like copy-cat it introduces extra

‘causal wiring’ but its definition is much more subtle, though is easy to describe

in special cases. For example if the game A comprises a single Player move ⊕ the

strategy δA ∶ A + //A∥A takes the form ⊕
⊖

. 33;

� ##+⊕

. A similar construction applies in the

case where all the moves of a game are that of Player. If the game A comprises

a single Opponent move ⊖ then δA ∶ A + //A∥A takes the form ⊕ ⊖�llr

⊕ ⊖�llr

, where the

wiggly line indicates the inconsistency between the two Player moves.

Duplication The definition of δA ∶ A + //A∥A in general is via rigid families. For

each triple (x, y1, y2), where x ∈ C(A⊥) and y1, y2 ∈ C(A), which is balanced, i.e.

∀a ∈ y1 ∪ y2. polA(a) = + Ô⇒ a ∈ x and ∀a ∈ x. polA⊥(a) = + Ô⇒ a ∈ y1 or a ∈ y2,

and choice function χ ∶ x+ → {1,2} , such that χ(a) = 1 Ô⇒ a ∈ y1 and χ(a) =
2 Ô⇒ a ∈ y2, the order q(x, y1, y2;χ) is defined to have underlying set {0} × x ∪
{1} × y1 ∪ {2} × y2 with order generated by that inherited from A⊥∥A∥A together

with
{((0, a), (1, a)) ∣ a ∈ y1} ∪ {((0, a), (2, a)) ∣ a ∈ y2} ∪
{((χ(a), a), (0, a)) ∣ a ∈ x & polA⊥(a) = +} .

The rigid family Q consists of all such q(x, y1, y2;χ) for balanced (x, y1, y2) and

choice functions χ. From Q we obtain the event structure Pr(Q) in which events

6

Castellan, Hayman, Lasson and Winskel

are prime orders, i.e. with a top element; events of Pr(Q) inherit the polarity

of their top elements to obtain an event structure with polarity. We define the

strategy δA ∶ A + //A∥A to be the map Pr(Q) → A⊥∥A∥A sending a prime to its top

element. We remark that the meaning of a triple of configurations x, y1, y2 of C

being balanced is almost y1 ∪ y2 ⊑C x but is not this in general as y1 ∪ y2 need not

itself be a configuration of C.

The operation δA forms a comonoid with counit � ∶ A + //∅. In fact, they form part

of a Frobenius algebra in which the accompanying monoid is obtained by duality.

4 A language for strategies

We describe, somewhat schematically, a language for describing strategies based on

the constructions above. In fact, it is based on an earlier language for profunc-

tors [12], taking advantage of the view of strategies as special profunctors.

4.1 Types

Types are games A,B,C,⋯. We have type operations corresponding to the opera-

tions on games of forming the dual A⊥, simple parallel composition A∥B, sum Σi∈IAi
as well as recursively-defined types µX.A(X), although we shall largely ignore the

latter as it rests on well-established techniques [11].

One way to relate types is through the affine maps between them. There will be

operations for shifting between types related by affine maps (described by configu-

ration expressions). These will enable us e.g. to shift

A type environment is a finite partial function from variables to types, for con-

venience written typically as Γ ≡ x1 ∶ A1,⋯, xm ∶ Am, in which the (configuration)

variables x1,⋯, xm are distinct. It denotes a (simple) parallel composition ∥xiAi.
In describing the semantics we shall sometimes write Γ for the parallel composition

it denotes.

4.2 Configuration expressions

Configuration expressions denote finite configurations of games in an environment.

A typing judgement Γ ⊢ p ∶ B for a configuration expression p in a type environment

Γ denotes an affine map from Γ to B. In particular, the judgement Γ, x ∶ A ⊢ x ∶ A
denotes the partial map of event structures projecting to the single component A.

The special case x ∶ A ⊢ x ∶ A denotes the identity map.

We shall allow configuration expressions to be built from affine maps f = (f0, f1) ∶
A →a B in the judgement Γ, x ∶ A ⊢ fx ∶ B and the equivalent judgement Γ, x ∶ A ⊢
f0 ∪ f1x ∶ B . In particular, f1 may be completely undefined, allowing configuration

expressions to be built from constant configurations, as e.g. in the judgement for

the empty configuration Γ ⊢ ∅ ∶ A or a singleton configuration Γ ⊢ {a} ∶ A when a

is an initial event of A. The expression {a} ∪ x′ associated with the judgement

Γ, x′ ∶ A/a ⊢ {a} ∪ x′ ∶ A,
where a is an initial event of A, is used later in the transition semantics.

The three inductive rules for configuration expressions are as follows, where Γ⊥

is x1 ∶ A⊥1 ,⋯, xm ∶ A⊥m:

Γ ⊢ p ∶ Aj
Γ ⊢ jp ∶ Σi∈IAi

j ∈ I Γ ⊢ p ∶ A ∆ ⊢ q ∶ B
Γ,∆ ⊢ (p, q) ∶ A∥B

Γ ⊢ p ∶ B
Γ⊥ ⊢ p ∶ B⊥

7

Castellan, Hayman, Lasson and Winskel

For a sum Σi∈IAi, the left-hand rule gives configuration expressions jp where j ∈ I
and p is a configuration expression of type Aj : In the central rule for simple parallel

composition we exploit the fact that configurations of simple parallel compositions

are essentially pairsof configurations of the components. Finally, in the right-hand

rule configurations of B⊥ can be taken to be the same as configurations of B.

4.3 Terms for strategies

Terms denoting strategies have typing judgements:

x1 ∶ A1,⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1,⋯, yn ∶ Bn ,
where all the variables are distinct, interpreted as a strategy from the game x1 ∶
A1,⋯, xm ∶ Am denotes to the game y1 ∶ B1,⋯, yn ∶ Bn denotes.

We can think of the term t as a box with input and output

wires for the typed variables:

-

--

-A1

Am

B1

Bn
⋮⋮

Duality The duality of input and output is caught by the rules:
Γ, x ∶ A ⊢ t ⊣∆

Γ ⊢ t ⊣ x ∶ A⊥,∆
Γ ⊢ t ⊣ x ∶ A,∆
Γ, x ∶ A⊥ ⊢ t ⊣∆

Composition The composition of strategies is described in the rule
Γ ⊢ t ⊣∆ ∆ ⊢ u ⊣ H

Γ ⊢ ∃∆. [t ∥ u] ⊣ H

which, in the picture of strategies as boxes, joins the output wires of one strategy

to input wires of the other. Note that the simple parallel composition of strategies

arises as a special case when ∆ is empty.

Nondeterministic sum We can form the nondeterministic sum of strategies of

the same type: Γ ⊢ ti ⊣∆ i ∈ I
Γ ⊢ []i∈I ti ⊣∆

We shall use � for the empty nondeterministic sum, when the rule above specialises

to Γ ⊢ � ⊣∆ . The term � denotes the minimum strategy in the game Γ⊥∥∆.

Pullback We can form the pullback of two strategies of the same type:
Γ ⊢ t1 ⊣∆ Γ ⊢ t2 ⊣∆

Γ ⊢ t1 ∧ t2 ⊣∆

In the case where t1 and t2 denote the respective strategies σ1 ∶ S1 → Γ⊥∥∆ and

σ1 ∶ S1 → Γ⊥∥∆, the strategy t1 ∧ t2 denotes the pullback of σ1 and σ2. Informally,

such a strategy acts as the two component strategies agree to act.

Hom-set The hom-set rule is a powerful way to lift affine maps or relations ex-

pressed in terms of cospans of affine maps to strategies. Write p[∅] for the substi-

tution of the empty configuration ∅ for all configuration variables appearing in a

configuration expression p. The hom-set rule

Γ ⊢ p′ ∶ C ∆ ⊢ p ∶ C
Γ ⊢ p ⊑C p′ ⊣∆

p[∅] ⊑C p′[∅]

introduces a term standing for the hom-set (C(C),⊑C)(p, p′). It relies on config-

uration expressions p, p′ and their typings. If ∆ ⊢ p ∶ C denotes the affine map

g = (g0, g1) and Γ ⊢ p′ ∶ C denotes the affine map f = (f0, f1), the side condition of

8

Castellan, Hayman, Lasson and Winskel

the rule ensures that g0 ⊑C f0. A term for copy-cat arises as a special case of the

hom-set rule: x ∶ A ⊢ y ⊑A x ⊣ y ∶ A.
The hom-set rule is very expressive — see Section 4.4. The precise definition of

the strategy which the hom-set rule yields is given in the next section.

Duplication Duplication terms are described by the rule
Γ ⊢ p ∶ C ∆1 ⊢ q1 ∶ C ∆2 ⊢ q2 ∶ C

Γ ⊢ δC(p, q1, q2) ⊣∆1,∆2

provided p[∅], q1[∅], q2[∅] is balanced in the sense of Section 3.2. The term for the

duplication strategy is, in particular, x ∶ A ⊢ δA(x, y1, y2) ⊣ y1 ∶ A,y2 ∶ A.

4.3.1 Hom-set terms: semantics

The definition of the strategy which Γ ⊢ p ⊑C p′ ⊣ ∆ denotes is quite involved.

We first simplify notation. W.l.o.g. assume ∆ ⊢ p ∶ C and Γ ⊢ p′ ∶ C — using

duality we can always rearrange the environment to achieve this. Write A for the

denotation of the environment Γ and B for the denotation of ∆. Let ∆ ⊢ p ∶ C
and Γ ⊢ p′ ∶ C denote respectively the affine maps g = (g0, g1) ∶ B →a C and

f = (f0, f1) ∶ A →a C. Note that we have that g0 ⊑C f0 from the typing of p ⊑C p′.
We build the strategy out of a rigid family Q with elements as follows. First, define

a pre-element to be a finite preorder comprising a set {1} × x ∪ {2} × y , for which

x ∈ C(A⊥) & y ∈ C(B) & gy ⊑c fx , with order that induced by ≤A⊥ on x, ≤B on y,

with additional causal dependencies

(1, a) ≤ (2, b) if f1(a) = g1(b) & b is +ve, and

(2, b) ≤ (1, a) if f1(a) = g1(b) & b is −ve.

As elements of the rigid family Q we take those pre-elements for which the order

≤ is a partial order (i.e. is antisymmetric). The elements of Q are closed under

rigid inclusions, so Q forms a rigid family. We now take S =def Pr(Q); the events

of S (those elements of Q with a top event) map to their top events in A⊥∥B from

where they inherit polarities. This map can be checked to be a strategy: innocence

follows directly from the construction, while receptivity follows from the constraint

that gy ⊑c fx.

It is quite easy to choose an example where antisymmetry fails in a pre-element,

in other words, in which the preorder is not a partial order. However, when either p

or p′ is just a variable, no nontrivial causal loops are introduced and all pre-elements

are elements. More generally, if one of p or p′ is associated with a partial rigid map

(i.e. a map which preserves causal dependency when defined), then no nontrivial

causal loops are introduced and all pre-elements are elements.

4.3.2 Duplication terms: semantics

Consider now the semantics of a term Γ ⊢ δC(p, q1, q2) ⊣∆ . W.l.o.g. we may assume

that the environment is arranged so ∆ ≡ ∆1,∆2 with judgements Γ ⊢ p ∶ C, ∆1 ⊢
q1 ∶ C and ∆2 ⊢ q2 ∶ C. To simplify notation assume the latter judgements for

configuration expressions denote the respective affine maps f = (f0, f1) ∶ A →a C,

g1 = (g0
1, g1

1) ∶ B1 → C and g2 = (g0
2, g2

1) ∶ B2 → C. From the typing of δC(p, q1, q2)
we have that (f0, g0

1, g
0
2) forms a balanced triple in C. We build the strategy out of a

rigid family Q with elements as follows. We construct pre-elements from x ∈ C(A⊥),
y1 ∈ C(B1) and y2 ∈ C(B2) where (fx, g1y1, g2y2) is a balanced triple in C with a

9

Castellan, Hayman, Lasson and Winskel

choice function χ. There are three kinds of elements of x:

x− = {a ∈ x ∣ polA⊥(a) = −} ,
x+0 = {a ∈ x ∣ polA⊥(a) = + & f1(a) ∈ g0

χ(f1(a))} and

x+1 = {a ∈ x ∣ polA⊥(a) = + & f1(a) ∈ g1
χ(f1(a))yχ(f1(a))}

We define a typical pre-element to be a finite preorder on the set

{0} × (x− ∪ x+1 ∪ {(χ(f1(a)), a) ∣ a ∈ x+0}) ∪ {1} × y1 ∪ {2} × y2 ,

with order that induced by that of the game A⊥∥B1∥B2 with additional causal

dependencies
(0, a) ≤ (1, b) if f1(a) = g1

1(b) & b is +ve in B1,

(0, a) ≤ (2, b) if f1(a) = g1
2(b) & b is +ve in B2, and

(χ(f1(a)), b) ≤ (0, a) if a ∈ x+1 & f1(a) = g1
χ(f1(a))(b) ,

for b −ve in Bχ(f1(a)). As elements of the rigid family Q we take those pre-elements

for which the order ≤ is a partial order (i.e. is antisymmetric). Once Q is checked

to be a rigid family, we can take S =def Pr(Q); the events of S map to the events

in the game A⊥∥B1∥B2 associated with their top events, from where they inherit

polarities. This map defines the strategy denoting the original duplication term.

4.4 Expressivity

The terms for strategies are surprisingly expressive and potentally rich in laws, able

to support a form of equational reasoning, that we can only touch on here. For

example the Frobenius algebra associated with duplication immediately yields laws.

Other laws capture basic facts about the Scott order. For instance, assuming z ⊆ x, y
in C(A), we have y ⊑A x iff y/z ⊑A/z x/z.

As we shall see, we can derive the laws expected of a recursion operator provided

the recursion involves a homorphism w.r.t. the duplication comonad, and this fact

too we could hope to derive. Some of the reasoning can be made diagrammatic,

using the techniques of string diagrams.

Hom-set terms provide many basic strategies. The denotation of x ∶ A ⊢ ∅ ⊑A
∅ ⊣ y ∶ B is the strategy in the game A⊥∥B given by the identity map idA⊥∥B ∶
A⊥∥B → A⊥∥B. The denotation of ⊢ y ⊑A ∅ ⊣ y ∶ A is �A, the minimum strategy in

the game A comprising just the initial −ve events of A.

The judgement x ∶ Aj ⊢ y ⊑Σi∈IAi jx ⊣ y ∶ Σi∈IAi denotes the injection strategy:

its application to a strategy in Aj fills out the strategy according to the demands

of receptivity to a strategy in Σi∈IAi. Its converse x ∶ Σi∈IAi ⊢ jy ⊑Σi∈IAi x ⊣ y ∶ Aj
applied to a strategy of Σi∈IAi projects the strategy to a strategy in Aj .

More is obtained by combining hom-set with other operations such as compo-

sition. Assume ⊢ t ⊣ y ∶ B. When f ∶ A → B is a map of event structures with

polarity, the composition ⊢ ∃y ∶ B. [t ∥ fx ⊑B y] ⊣ x ∶ A denotes the pullback

f∗σ of the strategy σ denoted by t across the map f ∶ A → B. In the case where

a map of event structures with polarity f ∶ A → B is innocent, the composition

⊢ ∃x ∶ A. [y ⊑B fx ∥ t] ⊣ y ∶ B denotes the ‘relabelling’ f!σ of the strategy σ

denoted by t.

A great deal is achieved through basic manipulation of the input and output

“wiring” afforded by the hom-set rules and input-output duality. For instance, to

10

Castellan, Hayman, Lasson and Winskel

achieve the effect of lambda abstraction: via the hom-set rule we obtain

x ∶ A⊥, y ∶ B ⊢ z ⊑A∥B (x, y) ⊣ z ∶ A⊥∥B ,

which joins two inputs to a common output, whence:
Γ, x ∶ A ⊢ t ⊣ y ∶ B
Γ ⊢ t ⊣ x ∶ A⊥, y ∶ B

⋮
x ∶ A⊥, y ∶ B ⊢ z ⊑A⊥∥B (x, y) ⊣ z ∶ A⊥∥B

Γ ⊢ ∃x ∶ A⊥, y ∶ B. [t ∥ z ⊑A⊥∥B (x, y))] ⊣ z ∶ A⊥∥B
A trace, or feedback, operation is another consequence of such “wiring.” Given a

strategy Γ, x ∶ A ⊢ t ⊣ y ∶ A,∆ represented by the diagram t

Γ

A A

∆
we obtain

Γ,∆⊥ ⊢ t ⊣ x ∶ A⊥, y ∶ A, which, post-composed with the term x ∶ A⊥, y ∶ A ⊢ x ⊑A y ⊣
denoting the copy-cat strategy γA⊥ , yields Γ ⊢ ∃x ∶ A⊥, y ∶ A. [t ∥ x ⊑A y] ⊣ ∆ ,

representing its trace:

t

Γ ∆

A

The composition introduces causal links from the +ve events of y ∶ A to the −ve

events of x ∶ A, and from the +ve events of x ∶ A to the −ve events of y ∶ A —

these are the usual links of copy-cat γA⊥ as seen from the left of the turnstyle. This

trace coincides with the feedback operation which has been used in the semantics

of nondeterministic dataflow (where only games comprising solely Player moves are

needed) [10].

Recursive definitions can be achieved from trace with the help of duplication.

For those strategies which respect δ, i.e.δA⊙σ ≅ (σ∥σ)⊙δΓ∥A, and in particular

for strategies which are homomorphisms between δ-comonoids, the recursive defi-

nition does unfold in the way expected, in the sense that the recursive definition is

isomorphic to its unfolding:

σ δA

Γ
≅ σ δA

σδΓ
Γ A

This follows as a general fact from the properties of trace monoidal categories and

the string-diagram reasoning they support. However, not all strategies are homo-

morphisms between δ-comonoids, characterised in the following theorem.

Theorem 4.1 A strategy σ ∶ S → A⊥ ∣∣ B respects δ iff

● components σ1 ∶ S → A⊥ and σ2 ∶ S → B preserve causal dependency when defined,

● σ1 reflects configurations of A⊥, i.e. if x ⊆ S is such that σ1x ∈ C(A⊥) then

x ∈ C(S), and

● for every +ve event s ∈ S such that σ(s) ∈ A⊥ we have the number of −ve events

of σ2[s] equals the number of +ve events of σ1[s].
In this case, σ also respects counits, i.e. �B⊙σ ≅ �A.

11

Castellan, Hayman, Lasson and Winskel

5 A process perspective

The operations on strategies have much in common with the operations of process

algebra and can be seen as forming the basis of a higher-order process language.

However, from the perspective of concurrent processes, we must address several

issues: its operational semantics, a suitable form of equivalence and expressivity.

These require we examine the effects of synchronization and the internal, neutral

events it produces, more carefully. Composition of strategies can introduce deadlock

which is presently hidden. This, for example, affects the reliability of winning

strategies; presently a strategy may be deemed winning and yet possibly deadlock

before reaching a winning configuration. The next example illustrates how hidden

deadlocks may be created in a composition of strategies.

Example 5.1 (i) Deadlock may arise in a composition τ⊙σ through σ ∶ A + //B
and τ ∶ B + //C imposing incompatible causal dependencies between events in B.

For instance B may contain two concurrent events of opposite polarities b1 = ⊖
and b2 = ⊕. The strategy σ may impose the causal dependency s1 _ s2 between

occurrences of b1 and b2 respectively. From the point of view of strategy τ , the game

B has changed polarity to B⊥ and τ may impose the reverse causal dependency

s2 _ s1 between occurrences of b2 and b1 respectively.

(ii) Composition of strategies may hide computation which is stuck. For games

B = ⊕∥⊕ and C = ⊕, assume strategy σ1 ∶ ∅ + //B nondeterministically chooses the

right or left move in B, strategy σ2 ∶ ∅ + //B chooses just the right move in B, while

strategy τ ∶ B + //C yields output in C if it gets the right event of B as input. The

two strategy compositions τ⊙σ1 and τ⊙σ2 are indistinguishable. ◻

5.1 Partial strategies

To treat such phenomena explicitly and in order to obtain a transition semantics,

we extend strategies with neutral events. Extend event structures with polarity to

include a neutral polarity 0; as before, maps preserve polarities when defined. How-

ever within games we shall still assume that all events have +ve or −ve polarity.

Definition 5.2 A partial strategy from a game A to a game B comprises a total

map σ ∶ S → A⊥∥N∥B of event structures with polarity (in which S may also have

neutral events) where

(i) N is an event structure consisting solely of neutral events;

(ii) σ is receptive, i.e. if σx
c−Ð⊂ in C(S) with c −ve, then x

s−Ð⊂ and σ(s) = c, for

some unique s ∈ S;
(ii) in the partial-total factorization of the composition of σ

with the projection A⊥∥N∥B → A⊥∥B, drawn to the right,

the defined part σ0 is a strategy.

S
σ ��

//S0

σ0��
A⊥∥N∥B //A⊥∥B

Partial strategies in a game A correspond to partial strategies from the empty

game to A. Strategies between games correspond to those partial strategies in which

the neutral events N form the empty event structure.

It may seem odd that partial strategies are total maps. Why have we not taken a

partial strategy to be undefined on events which are sent to N? Because such partial

maps do not behave well under pullback, and this would complicate the definition

12

Castellan, Hayman, Lasson and Winskel

of composition and spoil later results such as that the pullback of a partial strategy

is a partial strategy. With our choice of definition we are able to localise neutral

events to the games over which they occur; with the alternative definition, different

forms of undefined would become conflated.

5.2 Operations on partial strategies

The operations on strategies extend and give an interpretation of the language of

Section 4 in terms of partial strategies. The defined parts of the operations on

partial strategies coincide with the operations on the defined parts.

We can compose two partial strategies σ ∶ S → A⊥∥NS∥B and τ ∶ T → B⊥∥NT∥C
by pullback. Ignoring polarities temporarily, and padding with identity maps, we

obtain τ ⊛ σ via the pullback
T ⊛ S

tt
τ⊛σ
		

**
S∥NT∥C

σ∥NT ∥C **

A∥NS∥T
A∥NS∥τtt

A∥NS∥B∥NT∥C .
once we reinstate polarities and make the events of B neutral. Receptivity of

τ ⊛ σ follows directly from that of σ and τ . That the defined part of τ ⊛ σ is

a strategy follows once it is shown that the defined part of the composite T ⊛
S
τ⊛σÐ→ A⊥∥(NS∥B∥NT)∥CÐ→A⊥∥C is isomorphic to τ0⊙σ0 , the composition of the

defined parts of σ and τ .

With partial strategies we no longer generally have that composition with copy-

cat yields the same strategy up to isomorphism: there will generally be extra neutral

events introduced through synchronizations. However, through the use of may/must

equivalence, a bicategory may be recovered (see Appendix A and the conclusion).

Let σi ∶ Si → A⊥∥Ni∥B, where i ∈ I, be a family of partial strategies. Their

sum is the partial strategy []i∈I σi ∶ S → A⊥∥(∥i∈INi)∥B. Its events are obtained

as the disjoint union of the Si but where the initial −ve events are identified to

maintain receptivity; they map under []i∈I σi as directed by the component maps

σi. Causal dependency is inherited from the components Si with a finite subset of

events consistent iff its down-closure contains +ve events from at most one Si. As

such, the nondeterministic sum only commits to a component through the occur-

rence of a positive event: from the perspective of tracking potential deadlocks, it

is not necessary to view neutral events as committing to a particular component

since, in isolation, a neutral event cannot introduce deadlock when composed with

a counterstrategy due to receptivity.

The pullback of partial strategies σ1 ∶
S1 → A⊥∥N1∥B and σ2 ∶ S2 → A⊥∥N2∥B
is obtained as to the right.

S1 ∧ S2

uu))
σ1∧σ2
��

S1∥N2

σ1∥N2
))

S2∥N1 .

σ2∥N1
uu

A⊥∥N1∥N2∥B
5.3 Transition semantics

We now discuss transition semantics for partial strategies presented in Figure 1.

For brevity, the rules presented require the left-hand environment to be empty; this

can always be achieved using the rules for duality. In the transition rules, we write

t ⊣ ∆ instead of ∅ ⊢ t ⊣ ∆. Transitions are associated with two kinds of actions,

either an action o associated with a hidden neutral action t ⊣ ∆
oÐÐÐÐ→ t′ ⊣ ∆ or

13

Castellan, Hayman, Lasson and Winskel

Composition:

t ⊣ y ∶ B,∆,Γ y∶ b ∶y′ÐÐÐÐÐ→ t′ ⊣ y′ ∶ B/b,∆,Γ
u ⊣ y ∶ B⊥,∆⊥,H y∶ b ∶y′ÐÐÐÐÐ→ u′ ⊣ y′ ∶ B⊥/b,∆⊥,H

∃y ∶ B,∆. [t ∥ u] ⊣ Γ,H
oÐÐ→ ∃y′ ∶ B/b,∆. [t′ ∥ u′] ⊣ Γ,H

t ⊣ Γ,∆
αÐÐÐÐÐ→ t′ ⊣ Γ′,∆

∃∆. [t ∥ u] ⊣ Γ
αÐÐÐÐÐ→ ∃∆. [t′ ∥ u] ⊣ Γ′

u ⊣ H,∆⊥
βÐÐÐÐÐ→ u′ ⊣ H′,∆⊥

∃∆. [t ∥ u] ⊣ H
βÐÐÐÐÐ→ ∃∆. [t ∥ u′] ⊣ H′

Hom-sets: Assuming a is an initial event of A for which p[{a}/x][∅] ⊑C p′[{a}/x][∅],

p ⊑C p′ ⊣ x ∶ A,∆ x∶a ∶x′ÐÐÐÐÐ→ p[{a} ∪ x′/x] ⊑C p′[{a} ∪ x′/x] ⊣ x′ ∶ A/a,∆
Above, the variable x will only appear in one of p and p′.

Sum of partial strategies:

ti ⊣∆
εÐÐÐÐÐ→ t′i ⊣∆′ ∀i ∈ I

[]i∈I ti ⊣∆
εÐÐÐÐÐ→ []i∈I t′i ⊣∆

ε is −ve

tj ⊣∆
oÐÐÐÐÐ→ t′j ⊣∆′

[]i∈I ti ⊣∆
oÐÐÐÐÐ→ []i∈I t′i ⊣∆

j ∈ I, where t′i = ti if i ≠ j

tj ⊣∆
εÐÐÐÐÐ→ t′j ⊣∆′

[]i∈I ti ⊣∆
εÐÐÐÐÐ→ t′j ⊣∆′

j ∈ I & ε is +ve

Pullback:

t1 ⊣∆
oÐÐÐÐÐ→ t′1 ⊣∆

t1 ∧ t2 ⊣∆
oÐÐÐÐÐ→ t′1 ∧ t2 ⊣∆

t2 ⊣∆
oÐÐÐÐÐ→ t′2 ⊣∆

t1 ∧ t2 ⊣∆
oÐÐÐÐÐ→ t1 ∧ t′2 ⊣∆

ti ⊣∆
z∶ c ∶z′ÐÐÐÐÐ→ t′i ⊣∆′ ∀i ∈ {1,2}

t1 ∧ t2 ⊣∆
z∶ c ∶z′ÐÐÐÐÐ→ t′1 ∧ t′2 ⊣∆

Duplication: δC(p, q1, q2) ⊣ x ∶ A,∆ x∶a ∶x′ÐÐÐÐÐ→ δC(p, q1, q2)[{a} ∪ x′/x] ⊣ x′ ∶ A/a,∆ if either

● a is an initial −ve event of A, or

● a is an initial +ve event of A and there exists i ∈ {1,2} s.t. either ⋅ x ∈ fv(qi) and qi(x ∶ a) ∈ p[∅] or

⋅ x ∈ fv(p) and p(x ∶ a) ∈ qi[∅].
Fig. 1. Transition semantics

an initial event located in the environment t ⊣ x ∶ A,∆ x∶a ∶x′ÐÐÐÐ→ t′ ⊣ x′ ∶ A/a,∆.

Notice that a neutral action leaves the types unchanged but may affect the term.

An action x ∶ a ∶ x′ is associated with an initial event ev(x ∶ a ∶ x′) =def x ∶ a
at the x-component of the environment. On its occurrence, the component of the

environment x ∶ A is updated to x′ ∶ A/a in which x′, a fresh resumption variable,

stands for the configuration remaining in the remaining game A/a. Say an action

x ∶ a ∶ x′ is +ve/−ve according as a is +ve/−ve. In the ruless for composition, we

use α for o or an action of the form x ∶ a ∶ x′ where x is in the domain of Γ and use

β for o or an action of the form y ∶ b ∶ y′ where y is in the domain of H.

In typed judgements of δC(p, q1, q2), a variable can appear free in at most one of

p, q1, q2. Write, for example, y ∈ fv(p) for y is free in p, and q1(y ∶ b) ∈ p[∅] to mean

the image of b under the map q1 denotes is in the configuration denoted by p[∅].
Theorem 5.3 Assume certain primitive strategies ∅ ⊢ σ0 ⊣ ∆, so as a map, σ0 ∶
S →∆, for which we assume rules,

σ0 ⊣∆
εÐÐÐÐ→ σ′0 ⊣∆′ s is initial in S & σ0(s) = ev(ε).

Then, derivations in the operational semantics
⋮

t ⊣∆
εÐÐÐÐ→ t′ ⊣∆′,

up to α-equivalence, in which t denotes the partial strategy σ ∶ S → ∆, are in 1-1

correspondence with initial events s in S such that σ(s) = ev(ε) when ev(ε) ≠ o or

s is neutral when ev(ε) = o.

14

Castellan, Hayman, Lasson and Winskel

6 Extensions & concluding remarks

We have seen a range of constructions on concurrent strategies that support a rich

higher-order language for them, with a corresponding operational semantics. For

the latter a central part has been the introduction of partial strategies.

We have seen that composition of a partial strategy with copy-cat does not in

general yield the same strategy. There has not been space to cover the details here,

but a bicategory can be obtained that respects the may/must behaviour of partial

strategies by using stopping configurations (see Appendix A).

The bicategorical structure of strategies is largely undisturbed by extensions to

probabilistic and quantum games [14], imperfect information [?] and symmetry [1] —

though compact-closure becomes ∗-autonomy under extensions by winning condi-

tions [3] and pay-off [4]. The language of strategies is applicable in these extensions,

with minor modifications. The constraints of linearity can be alleviated in games

with symmetry which support (co)monads for copying [1]. The constructions of the

language extend fairly directly to games with symmetry, though to exploit sym-

metry fully the language needs to be extended to accommodate (co)monads up to

symmetry.

References

[1] Castellan, S., P. Clairambault and G. Winskel, Symmetry in concurrent games, in: LICS 2014 (2014).

[2] Cattani, G. L. and G. Winskel, Profunctors, open maps and bisimulation, Mathematical Structures in
Computer Science 15 (2005), pp. 553–614.

[3] Clairambault, P., J. Gutierrez and G. Winskel, The winning ways of concurrent games, in: LICS ’12
(2012).

[4] Clairambault, P. and G. Winskel, On concurrent games with payoff, in: MFPS ’13, number 298 in
ENTCS (2013).

[5] De Nicola, R. and M. Hennessy, Testing equivalences for processes, Theoretical Computer Science 34
(1984).

[6] Hyland, M., Some reasons for generalising domain theory, Mathematical Structures in Computer
Science 20 (2010), pp. 239–265.

[7] Milner, R., “Communication and concurrency,” Prentice Hall, 1989.

[8] Nygaard, M. and G. Winskel, Linearity in process languages, in: LICS ’02 (2002).

[9] Rideau, S. and G. Winskel, Concurrent strategies, in: LICS 2011 (2011).

[10] Saunders-Evans, L. and G. Winskel, Event structure spans for nondeterministic dataflow, ENTCS 175
(2007).

[11] Winskel, G., Event structure semantics for CCS and related languages, in: ICALP’82, LNCS 140
(1982).

[12] Winskel, G., Relations in concurrency, in: LICS ’05 (2005).

[13] Winskel, G., Event structures with symmetry, Electr. Notes Theor. Comput. Sci. 172: 611-652 (2007).

[14] Winskel, G., Distributed probabilistic strategies, in: MFPS ’13, number 298 in ENTCS (2013).

[15] Winskel, G., Strategies as profunctors, in: FOSSACS ’13, LNCS (2013).

15

Castellan, Hayman, Lasson and Winskel

A May and Must equivalence

Consider three partial strategies in a game comprising a single +ve event. For this

discussion it will be sufficient to consider just the event structures of the partial

strategies:

S1 ⊕ S2 ⊚ � ,,2⊕ S3 ⊚ ⊚ � ,,2⊕
Neutral events are drawn as ⊚. Conflict between pairs of events (meaning that

there is no set in the consistency relation containing them both) is drawn as .

All three partial strategies have the same strategy as their defined parts. However,

from the point of view of observing the move in the game, the first two partial

strategies differ from the third. In a maximal play both S1 and S2 will result in

the observation of the single move of the game. However, in S3 one maximal play

is that in which the leftmost neutral event has occurred, in conflict with observing

the single move of the game.

We follow [5] in making these ideas precise. For configurations x, y of an event

structure with polarity which may have neutral events write x ⊆p y to mean x ⊆ y
and all events of y ∖ x have polarity + or 0. We write ⊆0 to mean the inclusion

involves only neutral events

Definition A.1 Let σ be a partial strategy in a game A. Let τ ∶ T → A⊥∥⊕ be a

‘test’ strategy from A to a the game consisting of a single Player move ✓.

Say σ may pass τ iff there exists x ∈ C∞(T ⊛S) with image (τ ⊛ σ)x containing

✓.

Say σ must pass τ iff all x ∈ C∞(T⊛S) which are ⊆p-maximal have image (τ⊛σ)x
containing ✓.

Say two partial strategies are ‘may’ (‘must’) equivalent iff the tests they may

(respectively, must) pass are the same.

Two partial strategies with the same strategy as their defined part are ‘may’

equivalent but need not be ‘must’ equivalent. ‘Must’ inequivalence is lost in moving

from partial strategies to strategies. Moreover, as we have seen, partial strategies

lack identities w.r.t. composition, so they do not even form a bicategory. Fortu-

nately, for ‘may’ and ‘must’ equivalence it is not necessary to use partial strategies;

it is sufficient to carry with a strategy the extra structure of ‘stopping’ configura-

tions (= images of p-maximal configurations in a partial strategy). Composition

and copy-cat on strategies extend to composition and copy-cat on strategies with

stopping configurations, while maintaining a bicategory, in the following way.

First, to deal with races, we are forced to introduce a refinement of the Scott

order. We write x▷ y for this order on configurations of S which is the transitive

closure of the relation “x ⊑ y and y ∥ x is +-maximal in CCS”. On race-free games,

this order is the equality.

Let σ ∶ S → A⊥∥N∥B be a partial strategy from a game A to a game B. Recall

its associated partial-total factorization has defined part a strategy σ0 ∶ S0 → A⊥∥B.

Define the (possibly) stopping configurations in C∞(S0) to be

Stop(σ) =def↓ {dx ∣ x ∈ C∞(S) is p-maximal} ,
where d ∶ S → S0 is the partial map that is undefined where σ is undefined and

↓ S is the downclosure of S for the order ▷. Note that Stop(σ) will include all the

16

Castellan, Hayman, Lasson and Winskel

+-maximal configurations of S0: any +-maximal configuration y of S0 is the image

under p of its down-closure [y] in S, and by Zorn’s lemma this extends (necessarily

by neutral events) to a maximal configuration x of S with image y under d; by

maximality, if x
s−Ð⊂ then s cannot be neutral, nor can it be +ve as this would

violate the +-maximality of y.

The operation St ∶ σ ↦ (σ0,Stop(σ)) above, from partial strategies to strategies

with stopping configurations, motivates the following definitions.

A strategy with stopping configurations in a game A comprises a strategy S → A

together with a subset MS ⊆ C∞(S) which includes all +-maximal configurations.

As usual, a strategy with stopping configurations from a game A to game B is a

strategy with stopping configurations in the game A⊥∥B. A strategy is regarded

as a strategy with stopping configurations given simply as those which below a +-

maximal configuration for ▷. We can define ‘may’ and ‘must’ testing of strategies

with stopping configurations analogously to above.

Given two strategies with stopping configurations σ ∶ S → A⊥∥B, MS and τ ∶ T →
B⊥∥C, MT we define their composition by (τ,MT)⊙(σ,MS) =def (τ⊙σ,MT⊙MS)where

x ∈MT⊙MS iff

∃z ∈ C∞(T ⊛ S). [x]T⊛S ⊆0 z & Π1z ∈MS & Π2z ∈MT .

The stopping configurations of copy-cat is obtained as any other strategy, and in

particular we have MCCA = {y ∥ x ∣ x, y ∈ C∞(A), x▷ y}.

Proposition A.2 γA,MCCA is an identity w.r.t. the composition on strategies with

stopping configurations.

Lemma A.3 Let σ be a partial strategy from A to B and τ a partial strategy from

B to C. Then

Stop(τ ⊛ σ) = Stop(τ)⊙Stop(σ) .
Corollary A.4 A partial strategy σ ‘may’ (respectively‘must’) pass a test τ iff

St(σ) ‘may’ (‘must’) pass τ . The operation St preserves ‘may’ and ‘must’ equiva-

lence.

Strategies with stopping configurations inherit the structure of a bicategory from

strategies. We can interpret the metalanguage directly in terms of strategies with

stopping configurations in such a way that the denotation of a term as a strategy

with stopping configurations is the image under St of its denotation as a partial

strategy. To do this we should specify the stopping configurations []i∈I σi of a sum

of strategies with stopping configurations σi: a configuration of the sum is stopping

iff it is the image of a stopping configuration under the injection from a component.

Example A.5 It is tempting to think of neutral events as behaving like the internal

“tau” events of CCS [7]. However, in the context of strategies they behave rather

differently. Consider three partial strategies, over a game comprising of just two

concurrent +ve events, say a and b. The partial strategies have the following event

structures in which we have named events by the moves they correspond to in the

game:

S1 a

b

S2 ⊚ � ,,2a

⊚ � ,,2b

S3 ⊚ � ,,2a

b

17

Castellan, Hayman, Lasson and Winskel

All three become isomorphic under St so are ‘may’ and ‘must’ equivalent to each

other. ◻
The treatment of winning strategies of [3] generalises straightforwardly, with the

role of +-maximal configurations replaced by that of stopping configurations.

18

	Introduction
	Event structures and their maps
	Affine maps

	Concurrent games and strategies
	A bicategory of games and strategies
	Operations on strategies and duplication

	A language for strategies
	Types
	Configuration expressions
	Terms for strategies
	Expressivity

	A process perspective
	Partial strategies
	Operations on partial strategies
	Transition semantics

	Extensions & concluding remarks
	References
	May and Must equivalence

