Weak memory models using event structures

Simon Castellan!

1LIP, ENS Lyon

March 25, 2016
Gallium Seminar

Unexpected behaviours

A simple concurrent and imperative program:

x, y initialized to 0

x =11y =2

r< yll s+« x
shared variable - local register

Expected outcome: r Z0V s # 0.

Weak memory models using event structures - Simon Castellan

2/33

Unexpected behaviours

A simple concurrent and imperative program:

x, y initialized to 0

r< yl| s+ x

x =11y =2
shared variable - local register

Expected outcome: r Z0V s # 0.
Wrong on modern architectures (x86, ARM, ...).

Weak memory models using event structures - Simon Castellan

2/33

Unexpected behaviours

Another simple program:
x =1 y =1
n < X S] <Yy

rh <y Sy — X

Expected outcome: n =si=1=n=5=1

Weak memory models using event structures - Simon Castellan

3/33

Unexpected behaviours

Another simple program:
x =11 y:=1
n < X S] <Yy

rh <y Sy — X

Expected outcome: n =si=1=n=5=1

Wrong even without read exchange (Read Own Write Early).

Weak memory models using event structures - Simon Castellan 3/33

A need to specify the behaviour

What are the expected behaviour of a concurrent programs?
— It depends on the architectures.

Architectures need to be specified:
» what instructions can be reordered?
» how are writes propagated from one thread to the other?

Weak memory models using event structures - Simon Castellan 4 /33

A need to specify the behaviour

What are the expected behaviour of a concurrent programs?
— It depends on the architectures.

Architectures need to be specified:
» what instructions can be reordered?
» how are writes propagated from one thread to the other?

To that end, manufacturers provide prosaic documents, but:
» ambiguity: behaviours that are not specified
» inconsistent: some observations may not be predicted.

Some architectures:
» SC (Sequential consistency): no reordering, sequential memory,
» ARM: reordering of instructions targeting different variables,
write caches.
> x86: ...

Weak memory models using event structures - Simon Castellan 4 /33

Semantics saves the day

Semantics: Formalize mathematically the vendors specifications:
» get a (possibly computer-verified) proof of non-ambiguity,

» implement the specifications and mechanically test it against
real life architectures.

Two main types of semantics among existing models:

» operational semantics: executions are described by the runs of
an abstract machines,

» axiomatic semantics: the notion of valid execution is
axiomatized.

Those models are called weak memory models.

Weak memory models using event structures - Simon Castellan

5/33

Semantics and executions

The semantics generates from a program its possible executions:

Some executions

Program
x :=1|y =2 wil)-w§2)-R§2)-R§1)
r <y S < X wE?). Rgp). wgg). R§})

Executions can be formalized in different ways: traces,

partial-order, ...

Weak memory models using event structures - Simon Castellan

6/33

This talk

A semantics that is
» denotational: executions computed by induction
» the semantics is thus compositional

» compact: based on event structures
» no combinatorial explosion

» extensible: inspired from game semantics
» it is easy to add loops, control operators, higher-order, ...

Outline of the talk:

1. A semantics warm-up: compute the SC semantics using
traces.

2. Getting back the causality.

3. Our contribution: A parametric semantics using event
structures.

4. A game semantics aparté at the end (if time allows)

Weak memory models using event structures - Simon Castellan 7/33

I. A DENOTATIONAL SEMANTICS FOR SC

With traces of originality

Weak memory models using event structures - Simon Castellan 8/33

Syntax precedes semantics

Our very simple programming language:

e,e == { Expressions }
keN|reR|e+é
v 2= { Instructions }
la:=e (Write on a variable)
|r« a (Read on a variable)
t := { Threads }
[t .5t
p:= { Programs }
ti ... || ta

In real life; conditionals and barriers.

Weak memory models using event structures - Simon Castellan 9/33

Denotational semantics

Goal: compute [[t] € E where E is some space of denotations.

Our space here: langages of traces.

Y,=Vx{R,W} (Abstract memory event)
>.=2,xN (Concrete memory event)
E=2(%X7)

Notations: R(Xk), w(Xk).

Two steps:

1. Volatile semantics [t]©: shared variables are considered
volatile: [x := 1;r < x]© does not guarantee to read 1 in r.

2. Closed semantics: once [t]© is calculated for the whole
program, we restrict the scope of the variable
[x :=1;r < x] reads 1in r.

Weak memory models using event structures - Simon Castellan 10/33

Volatile semantics
Semantics of threads. Parametrized over p : R — N.

(Writes) [x := e;t]p= W) [tlp
(Reads) [r <« x;t]p= U (Rg) [tl(plr < /])>

ieN

Weak memory models using event structures - Simon Castellan 11/33

Volatile semantics
Semantics of threads. Parametrized over p : R — N.

(Writes) [x := e;t]p= W) [tlp
(Reads) [r <« x;t]p= U (Rff) [tl(plr < /])>

ieN

Semantics of programs. Obtained by interleaving (®):

[t - It =[]0 ® ... ® [ta]0

Weak memory models using event structures - Simon Castellan

11/33

Volatile semantics
Semantics of threads. Parametrized over p : R — N.

(Writes) [x := e;t]p= W) [tlp
(Reads) [r <« x;t]p= U (Rff) [tl(plr < /])>

ieN

Semantics of programs. Obtained by interleaving (®):
[t -t =[ta]0®...®[t,]0
Example. Define p=(x := 1,y < r ||y := 1;x < s)
» M wM P 2P e [p]

> but RO RO W WM ¢ [p].

Weak memory models using event structures - Simon Castellan

11/33

Closed semantics

Obtained by eliminating “inconsistent” traces (eg. wf(z) . 9))

Linear memory model. A language of “consistent” traces:
M(p:V —N)=e
| Rgu(x)) - M(p)

[M(ulx K])
M ::= M(x — 0)

Closed semantics: [p] = [p]° N M.

Example. Write p=(x := 1;r < y) || (v := 2;5s + x)

> every trace of [p] ends with RY or a R§,2).

Weak memory models using event structures - Simon Castellan 12 /33

Summary

Advantages.
» Easy to define semantics, by induction on programs.

» By making M more complex, complex cache schemes can be

handled

Drawbacks.
» Combinatorial explosion due to interleavings.

» How to model reordering of instructions?

Towards partial-orders.
» Because of reorderings, threads are not totally ordered

» Our goal: compute fine precisely dependencies between the
instructions, given an architecture.

Weak memory models using event structures - Simon Castellan 13/33

II. EVENT STRUCTURES

Raiders of the lost causality

Weak memory models using event structures - Simon Castellan 14 /33

Replacing traces by partial-orders

Idea: volatile semantics should be a set of partial-orders.
Term:

x =Ly =1,
r 4= X;s < vy,
z = s+t

Weak memory models using event structures - Simon Castellan 15 /33

Replacing traces by partial-orders
Idea: volatile semantics should be a set of partial-orders.

Dependencies (depends on the architecture):

—
<
[y

x
T4
<

~

Weak memory models using event structures - Simon Castellan

15 /33

Replacing traces by partial-orders

Idea: volatile semantics should be a set of partial-orders.

Executions (depends on the architecture):

) WD
<~ v
R rY)
™ X
wgi+j)
for i,j € N2.

» traces on X . becomes partially ordered multisets over X,
(pomsets)

» [t]© becomes a set of such pomsets.

Weak memory models using event structures - Simon Castellan 15 /33

Replacing traces by partial-orders

Idea: volatile semantics should be a set of partial-orders.

Executions (depends on the architecture):

) WD
<~ v
R rY)
™ X
wgi+j)
for i,j € N2.

» traces on X . becomes partially ordered multisets over X,
(pomsets)

» [t]© becomes a set of such pomsets.

» Problem: lots of redundancies in the pomsets..

Weak memory models using event structures - Simon Castellan 15 /33

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For

instance:
w(l) wﬁl)
R(XO) (1) R(O) R}(,l) .

v

W

Which sets of events w are (partial) executions?

» w must be downward-closed for —

Weak memory models using event structures - Simon Castellan

16 /33

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For

instance:
Wi;) wﬁ})
RN N
RO gD 2 RO gD 7

v

wl

Which sets of events w are (partial) executions?
» w must be downward-closed for —

» and ...7? {w&l),Rgo),R(xl)} cannot be a valid execution.

Weak memory models using event structures - Simon Castellan

16 /33

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For
instance:

wg;) W£})
RO v g v RO v R

v

wl

Which sets of events w are (partial) executions?
» w must be downward-closed for —

» and ...7? {w&l),Rgo),R(xl)} cannot be a valid execution.

= Need more structure than a partial-order: conflicts.

Weak memory models using event structures - Simon Castellan

16 /33

Event structures save the day

Definition (Event structures)

A set of event E with:
» A notion of causality represented by a partial order <g
» A notion of conflict represented by a relation ~g
> A labelling /: E — ¥

(4 axioms)

Definition (Configuration or partial execution)
A configuration of E is a subset w of E:
» downward-closed: e < e’ € w = e € w.

» that does not contain two conflicting events

Weak memory models using event structures - Simon Castellan 17 /33

Event structures save the day
On the example:

W) Wit
LN N
RO avr g R(yo)“/\/\/‘Rg,l)WV\'-.
AV <

<

WgO) wgl) wg2) Vng)

Weak memory models using event structures - Simon Castellan

18/33

Event structures save the day
On the example:

)
AN
RO avr g

h

wgO) wgl) wg2)
We have the configuration:

wlt)

Wit
YN
R(y0) MR RE}) A
/

<

wt)

Weak memory models using event structures - Simon Castellan

18/33

Event structures save the day
On the example:

W Wit
4N N
RO avr g R(yo)“/\/\/‘Rg,l)WV\'-.
AV <

<

wgO) wgl) wg2) Vng)
We have the configuration:

o

d

e

X

Weak memory models using event structures - Simon Castellan

18/33

Event structures save the day
On the example:

w(l) M

<k \...

R(O) AVAAYAS R 0) ANV R(l

W W

We have the configuration:

j:) e
0

Weak memory models using event structures - Simon Castellan 18 /33

Event structures save the day
On the example:

w(l) M

meR E/é\ﬁ

W W

We have the configuration:

S{l) wg/l)
{ 4
S(l) R}(,l)

Weak memory models using event structures - Simon Castellan 18 /33

Event structures save the day
On the example:

w(l) M

R(O) AVAAYAS R

We have the configuration:

g;) w§})
{ {
gl) R§})
N7
Wl

Weak memory models using event structures - Simon Castellan

18/33

III. DESIGNING A SEMANTICS WITH EVENT STRUCTURES

Dessine-moi une structure d'événements

Weak memory models using event structures - Simon Castellan 19 /33

Defining architectures

Now we define an architecture < as a pair (— ., E):
» —,C Y, x X, indicates which causality cannot be erased.

» E_/ is an event structure representing the memory model.

Examples for — -
> —5c= 2, X X,
> —u= {(e,€) | v(e) = v(e)} (v(x, _) =x).
> —>ig6= ...

Examples for E. include all languages M C X% (they can be
viewed as event structures).

Weak memory models using event structures - Simon Castellan 20/33

Computing the semantics [p] s

As previously, in two steps:

» Volatile semantics:

> threads: [t]9, is defined as previously but where the causality
outside —, are relaxed.

» programs: [t1 || ... || ta]S = [t | ... || [ta]%
where || is parallel composition.

» Closed semantics: [p]o = [p]9 A E
where A is the synchronized product: a generalization of
intersection of languages to event structures.

Weak memory models using event structures - Simon Castellan 21/33

Volatile semantics

S 4 X;X :=S;
Pourt= 1|t « y,y :=t; |, ona:
z = s+t
R)(P) R)(<1)
J J
o o
N N
Rgo) AWM Rg,l) RE,O) AN Rg,l)
J L 4 i1
W§,0) wg/l) ngo) Wg/l)
J L 4 i1
wgo) gl) wgl) (2

(SO)

Weak memory models using event structures - Simon Castellan 22 /33

Volatile semantics

S 4 X;X :=S;
Pourt= 1|t « y,y :=t; |, ona:
z = s+t
R)(P) R)(<1)
J J
o o
SN YN
Rgo) AWM Rg,l) RE,O) AN Rg,l)
J L 4 i1
W§,0) wg/l) ngo) Wg/l)
J L 4 i1
wgo) gl) wgl) (2

(SO)

Weak memory models using event structures - Simon Castellan 22 /33

Volatile semantics

S & X;X :=s;
Pourt= 1|t « y,y :=t; |, ona:
z = s+t
R)(P) R)(<1)
PoN PO

s N

R§,) «/\/vvvvvvvvvv\r R(l)

N

Rﬁ)«/_v\/\/\/\/vvvvvv\ng,)

N PR o

0 oo gt

J L4 S

ng) gl) Wgl) w(z2)
(x86)

Weak memory models using event structures - Simon Castellan

22/33

Volatile semantics

S 4 X;X :=S;
Pourt= 1|t « y,y :=t; |, ona:
z = s+t
R)(P) R)(<1)

LN LN

R§/0) wgo) Rg,l) R&O) S(l) R§,1)
X v 4 .
w50) Wg,l) WE/O) wg/l)
¥ L d L
e MCON(Y e

(x86)

Weak memory models using event structures - Simon Castellan 22 /33

Volatile semantics

S 4 X;X :=S;
Pourt= 1|t « y,y :=t; |, ona:
z = s+t
R)(<O) R>(<1)

LN E N

Rg/O) WS(O) Rg,l) R&O) S(l) R§,1)

! R L

W§/0) Wg,l) wE/O) Wg,l)

4 4 4 4

ng) ng) ng) w£2)
(ARM)

Weak memory models using event structures - Simon Castellan 22 /33

Volatile semantics

S+ X;X := s
Pourt= 1|t « y,y :=t; |, ona:
z = s+t
R&p) Rg})
R§/0) S(o) R§/1) R'g/o) 9) R§,1)

w B W
s 4 é&
WO IR @)

Weak memory models using event structures - Simon Castellan

22/33

Volatile semantics
S +— X;X :

[
n

Pourt= 1|1t «+ y,y :

Il
~+
o
]
o5

z = s+t

4 L

0 1 1
w® N\ o/
(ZO) w(zl) wgl) 22)

Weak memory models using event structures - Simon Castellan 22 /33

The memory model &
Define a consistent execution to be a X .-labelled partial-order
(g, <q) satisfying:
1. Write serialization. Writes on a variable are totally ordered.

WD B @ B @
XN
W2 5

) (k)

2. Coherent reading. For e = R&k € g, Wy’ is the maximal

event of {w&”) €q| W < e}

e

y
W@ >y m R

Theorem. There is an event structure £ whose configurations are
exactly consistent partial-orders.

Weak memory models using event structures - Simon Castellan

23/33

Example

x :=1 y =1
p= rn < x| sg < vy
rp <y Sy <— X

wg(l) Wg,l)
' & X &
0 1 0 1
X & L s X ¥ v M4
R§/0) A R§/1) R'§/0) A Rg/l) RE((J) W Rg(l) RE{O) AN RE(l)

(Volatile semantics for SC)

Weak memory models using event structures - Simon Castellan 24 /33

Example

p= rn < x| sg < vy
rp <y Sy <— X

ey e
X & X <
R© gD R(®) a p(M)
X v vy X ¥ v
T A B Y IOV)

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

x :=1 y =1
p= rn < x| sg < vy
rp <y Sy <— X

ey e
' & X &
0 1 0 1
X & L s X ¥ v M4
R§/0) A R'E/l) R'§/0) A Rg/l) RE(O) W RS(l) RE(O) AN RE(l)

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

p= rn < x| sg < vy
rp <—y Sy <— X

e wy)

< K &

N6 R§0) " RE/I)

< v X & < M
R&m " R51) RO wg® RO g

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

e wy)

< <+

) R&l)

< v <+ M
R&m " P"51) RO 1 g()

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

e wy)

< <+

) R§1)

< v <+ M
R&m " P"51) RO 1 g()

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

ey WD

<+ <

R RV

< M v M
R(O) gD NORASNCY

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

e wy)

< <+

) R§1)

< v <+ M
R&m " R(yl) RO 1 g()

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

e w§1)

< &

R0 R§1)

< v v M
R50) " R51) R(©) an gD

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

p= rn < x| sg < vy
rp <—y Sy <— X

e

X

<
()

X

< V¥

R&m " P"51)

(Computing [p]$ A &)

Weak memory models using event structures - Simon Castellan 24 /33

Example

p= rn < x| sg < vy
rp <—y Sy <— X

e

X

<
()

X

< V¥

R;m " R51)

(Computing [p]$ A &)

We can observe rp =51 = 1A =5 =0.

Weak memory models using event structures - Simon Castellan

24 /33

& is too relaxed
x =11 r + x

Consider p = < sy

y =1
< x
The denotation [p]$: A & contains the configuration:

WO 5 p®

v <%
RO RO

This allows the observation: r =1 A's =t = 0 which is not
possible with TSO (x86's memory model).

Problem. With TSO, writes becomes visible to all others threads
at the same time.

Weak memory models using event structures - Simon Castellan 25 /33

Defining &1s0
1. We need our model to be “thread-aware”:

WD 5 gD B

< <
R0 (0

2. Say a consistent execution satisfies the TSO criterion, when:

for all writes w € gq,
for all incomparable reads r,r' € q in a different thread than w
(w < r)iff (w < r')

3. Define &1sp to be the set of consistent execution satisfying
this criterion.

Weak memory models using event structures - Simon Castellan 26 /33

IV. THE GAME SEMANTICS BEHIND ALL THAT

La sémantique des jeux vue du ciel

Weak memory models using event structures - Simon Castellan 27 /33

|dealized Parallel Algol

Throwing in simply-typed A-calculus to our language we get IPA:

v

v

v

A,B:=int | var |unit | A= B
tbu=x|Ax.t|tu

| readvar—mnlt | writevar—nnt—mnlt

| new x"®" in t (t has type int or unit)

| (&) [(e] w)

Comes with an SC and call-by-name operational semantics.

Giving semantics: a semantics for A-calculus plus operators for
read, write, ...

Games semantics: types — games, programs — strategies.

We have good trace-based games model for that.

Weak memory models using event structures - Simon Castellan

28 /33

The usual strategy for read

An example.

X 1 var — int

Problem. No access to the continuation to break causalities.

Weak memory models using event structures - Simon Castellan 29 /33

The usual strategy for read

An example.

X 1 var — int

ask

Problem. No access to the continuation to break causalities.

Weak memory models using event structures - Simon Castellan

29 /33

The usual strategy for read

An example.

X 1 var — int

ask

x

rd

Problem. No access to the continuation to break causalities.

Weak memory models using event structures - Simon Castellan

29 /33

The usual strategy for read

An example.

X 1 var — int

ask

x

rd
<
k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures - Simon Castellan

29 /33

The usual strategy for read

An example.

X 1 var — int

Problem. No access to the continuation to break causalities.

Weak memory models using event structures - Simon Castellan

29 /33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:

x:var - f : (int — unit) — unit

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

4
k

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

4
k

\D .

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

<
k
\D run

v

ask

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

<
k
\D run

v

ask

<
k

Weak memory models using event structures - Simon Castellan 30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

4
k

\D .

<
ask A\/done

<
k

Weak memory models using event structures - Simon Castellan

30/33

Changing the type of read

The read operation becomes let : var — (int — unit) — unit:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

4
k

\D .

<
ask A\/done
< 4
k

done

Weak memory models using event structures - Simon Castellan

30/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

4%/
rd run

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

4%/
rd run

<
k

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

4%/
rd run

<
k
done

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rdQ/run
<
k
done
e
done

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rdQ/run
<
k
ask done
e
done

Weak memory models using event structures - Simon Castellan 31/33

Adding concurrency in the mix
But we have space to make it more concurrent!

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rdQ/run
%
\\\\\>f done
done

Weak memory models using event structures - Simon Castellan 31/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

Weak memory models using event structures - Simon Castellan 32/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

ask

Weak memory models using event structures - Simon Castellan 32/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

ask

rd/

Weak memory models using event structures - Simon Castellan 32/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

%
rd write;

ask

Weak memory models using event structures - Simon Castellan

32/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

ask

%
rd write;

;

Weak memory models using event structures - Simon Castellan

32/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

ask

%
rd write;

L <

n ok

Weak memory models using event structures - Simon Castellan

32/33

Example

Consider t = let x (An.write y 1;n+ 1):

X :var — y :var — int

ask

%
rd write;

L <

n ok

e

n+1

Weak memory models using event structures - Simon Castellan

32/33

Conclusion

Summary.

» We defined an denotational and extensible interpretation of

concurrent programs in terms of event structures.

» The interpretation is parametric over the architecture.

Extensions.

» We can define sub-models of & corresponding to actual
architectures.

» The model is inspired from a game semantics model and
simplified in this first-order setting.

To go further.
> Look at barriers
» Compare that with axiomatic semantics (executions)

» Theorems?

Weak memory models using event structures - Simon Castellan

33/33

