
Weak memory models using event structures

Simon Castellan1

1LIP, ENS Lyon

April 3rd, 2016
GaLoP 2016

Unexpected behaviours

A simple concurrent and imperative program:

x , y initialized to 0
x := 1 y := 2
r ← y s ← x

shared variable · local register

Expected outcome: r 6= 0 ∨ s 6= 0.

Wrong on modern architectures (x86, ARM, . . .).

Weak memory models using event structures · Simon Castellan 2 / 25

Unexpected behaviours

A simple concurrent and imperative program:

x , y initialized to 0
x := 1 y := 2
r ← y s ← x

shared variable · local register

Expected outcome: r 6= 0 ∨ s 6= 0.
Wrong on modern architectures (x86, ARM, . . .).

Weak memory models using event structures · Simon Castellan 2 / 25

Unexpected behaviours

A simple concurrent and imperative program:

x , y initialized to 0
r ← y s ← x
x := 1 y := 2

shared variable · local register

Expected outcome: r 6= 0 ∨ s 6= 0.
Wrong on modern architectures (x86, ARM, . . .).

Weak memory models using event structures · Simon Castellan 2 / 25

Unexpected behaviours

Another simple program:

x := 1 y := 1
s ← x s ′ ← y
t ← y t ′ ← x

Expected outcome: s = s ′ = 1⇒ t = t ′ = 1

Wrong even without read exchange (Read Own Write Early).

Weak memory models using event structures · Simon Castellan 2 / 25

Unexpected behaviours

Another simple program:

x := 1 y := 1
s ← x s ′ ← y
t ← y t ′ ← x

Expected outcome: s = s ′ = 1⇒ t = t ′ = 1

Wrong even without read exchange (Read Own Write Early).

Weak memory models using event structures · Simon Castellan 2 / 25

A need to specify the behaviour
What are the expected behaviour of a concurrent program?
→ It depends on the architecture.

Architectures need to be specified:
I what instructions can be reordered?
I how are writes propagated from one thread to the other?

To that end, manufacturers provide prosaic documents, but:
I ambiguity: behaviours that are not specified
I inconsistent: some observations may not be predicted.

Some architectures:
I SC (Sequential consistency): no reordering, sequential memory.
I ARM: reordering of instructions targeting different variables,

write caches.
I x86: . . .

Weak memory models using event structures · Simon Castellan 3 / 25

A need to specify the behaviour
What are the expected behaviour of a concurrent program?
→ It depends on the architecture.

Architectures need to be specified:
I what instructions can be reordered?
I how are writes propagated from one thread to the other?

To that end, manufacturers provide prosaic documents, but:
I ambiguity: behaviours that are not specified
I inconsistent: some observations may not be predicted.

Some architectures:
I SC (Sequential consistency): no reordering, sequential memory.
I ARM: reordering of instructions targeting different variables,

write caches.
I x86: . . .

Weak memory models using event structures · Simon Castellan 3 / 25

Semantics saves the day

Semantics: Formalize mathematically the vendors specifications:
I get a (possibly computer-verified) proof of non-ambiguity,
I implement the specifications and mechanically test it against

real life architectures.

Two main types of semantics among existing models:
I operational semantics: executions are described by runs of an

abstract machine,
I axiomatic semantics: the notion of valid execution is

axiomatized.

Those models are called weak memory models.

Weak memory models using event structures · Simon Castellan 4 / 25

This talk

Outline of the talk:
1. Reminder on the interpretation of shared memory concurrency

in game semantics
2. How to change the interpretation of state to accomodate a

concrete model: x86-TSO
3. Using those ideas to give a concrete model for the first-order

fragment dealing with weak memory models.

Our challenge, x86-TSO:
I A read and a write on different memory addresses can be

reordered inside a thread.
I A write need not be immediatly commited to main memory.

Once it is, it is available to all threads.

Weak memory models using event structures · Simon Castellan 5 / 25

I. Usual model of Idealized Parallel Algol

The good ol’ IPA

Weak memory models using event structures · Simon Castellan 6 / 25

The syntax and semantics of IPA

IPA: Concurrent programming language with shared variables based
on the simply-typed λ-calculus.

A,B ::= B | N | com | ref | A→ B

M,N ::= ...PCF constructs...
| !M | M := N | M;N

| new x in t

| t ‖ u

Existing games models:
I (Ghica-Murawski) Strategies as sets of non-alternating traces
I (C, Clairambault, Winskel) Strategies as event structures

Talk mostly agnostic about the representation.

Weak memory models using event structures · Simon Castellan 7 / 25

Interpretation of the state: pure part
Intepretation of var as N×

∏
n∈N com:

re wr0 wr1 . . .

n ok ok . . .

With the following accessors [presented as innocent strategies]:

re : ref N wr : ref N com

q run

re q

n n

n wrn

ok

done

Weak memory models using event structures · Simon Castellan 8 / 25

Interpretation of the state: pure part
Intepretation of var as N×

∏
n∈N com:

re wr0 wr1 . . .

n ok ok . . .

With the following accessors [presented as innocent strategies]:

re : ref N wr : ref N com

q run

re q

n n

n wrn

ok

done

Weak memory models using event structures · Simon Castellan 8 / 25

Interpretation of the state: the cell strategy

To interpret the new construct (the only one to break innocence):

1. Define the set of traces cell as C 0 with:

C (k) ::= ε

| re · k · C (k) (Reading from the cell)
| wrn · ok · C (n) (Writing on the cell)

2. Define Jnew x in tK = cell; JtK with x : ref ` t : X
(up to surgergy)

A term x : ref ` t : X sees x as volatile – reading on it can yield
any value.
Precomposing with cell enforces a particular memory discipline.

Weak memory models using event structures · Simon Castellan 9 / 25

Interpretation concurrency: ‖

The strategy ‖: com→ com→ com is not sequential but is still
innocent in a generalized sense.
→ We have now a dag:

com com com

run

run run

done done

done

Those dags can be composed inside CHO.

Weak memory models using event structures · Simon Castellan 10 / 25

Weakening the model

Problem: can we change the interpretation to match TSO?

Two issues:

I Handling instruction reordering: how to change re and wr to
model reorderings?

I Changing the memory discipline: the memory discipline of
TSO depends on the notion of threads absent from IPA.

→ We need a new language to solve this.

Weak memory models using event structures · Simon Castellan 11 / 25

II. IPA/x86: A less idealized programming language

A taste of metal in your IPA.

Weak memory models using event structures · Simon Castellan 12 / 25

Syntax of IPA/x86
Reading/write to a reference is modified to handle reorderings:

M,N ::= ...PCF constructs...
| letι r = !x in N | (x :=ι M;N) ι ∈ N is the thread-id
| new x in t | M ‖ N

There is no sequential composition anymore: operations take
directly their continuation:

Γ, r : N, x : ref ` N : com Γ ` M : ref
Γ ` letk r = !x in N : com

Γ, x : ref ` M : ref Γ ` N : com
Γ ` x :=k M;N

New interpretation of ref:

reι wrι0 wrι1 . . .

n ok ok . . .

Weak memory models using event structures · Simon Castellan 13 / 25

A dirty trick

How to interpret those new construct? Naive idea:
I letι : ref→ (N→ com)→ com
I wrι : ref→ N→ com→ com

Not enough to inspect of the continuation.

Use instead:
I letι : ref→ (N→ ref→ com)→ com
I wrι : ref→ N→ (ref→ com)→ com

with:
I Jletι r = !x in NK = letι � 〈JxK, λr .λx .JNK〉
I Jx :=ι M;NK = wrι � 〈JxK, λx .JNK〉

Weak memory models using event structures · Simon Castellan 14 / 25

A dirty trick

How to interpret those new construct? Naive idea:
I letι : ref→ (N→ com)→ com
I wrι : ref→ N→ com→ com

Not enough to inspect of the continuation.

Use instead:
I letι : ref→ (N→ ref→ com)→ com
I wrι : ref→ N→ (ref→ com)→ com

with:
I Jletι r = !x in NK = letι � 〈JxK, λr .λx .JNK〉
I Jx :=ι M;NK = wrι � 〈JxK, λx .JNK〉

Weak memory models using event structures · Simon Castellan 14 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q

r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q

r done

r

n

done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r

done

r

n

done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r

done

r n

done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n

done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?

Weak memory models using event structures · Simon Castellan 15 / 25

A sequential interpretation for let

letι : ref (N ref com) com

run

reι

n

run

q r done

r n done

s

s

Still sequential. Can we use the space to do better?
Weak memory models using event structures · Simon Castellan 15 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n

q r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q

r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q

r done

r

n

done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q

r done

r

n

done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r

done

r

n

done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r

done

r n

done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r

done

r n

done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r done

r n

done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures · Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

letι : ref (N ref com) com

run

reι run

n q r done

r n done

s

s

Two synchronizations points:
I One for data dependency
I One to sequentialize operations on x

The strategy for wr is done similarly (without data dependency).
Weak memory models using event structures · Simon Castellan 16 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0

re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

Examples

Take x : ref, y : ref ` M =

let0r =!x in
let0s =!y in
y :=0 r

: com.

x : ref y : ref com

run

re0 re0

k n

wr0
k

ok

done

Weak memory models using event structures · Simon Castellan 17 / 25

A strategy cell that represents a TSO memory
Instruction reorderings: check. What about relaxed memory?
→ Update the grammar of valid traces. Now parametrized over:

I a global value n

I thread-local local values µ : N→ N ∪ {?}
C (µ, n) ::= ε

| reι · µ(ι) · C (µ, n) (µ(ι) 6= ?)

(Read from local cache)
| reι · n · C (µ, n) (µ(ι) = ?)

(Read from the global memory)
| wrιk · ok · C (µ[ι← k], n)

(Write to local cache)
| C (µ[ι← ?], µ(ι)) (µ(ι) 6= ?)

(Committing a write)

This gives a strategy cellTSO.

Weak memory models using event structures · Simon Castellan 18 / 25

Example

Remember the program at the beginning:

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

The following is a valid trace of cellTSO (hence can describe a valid
interaction on x for instance)

wr0
1 · ok · re0 · 1 · re1 · 0

Weak memory models using event structures · Simon Castellan 19 / 25

Example

Remember the program at the beginning:

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

The following is a valid trace of cellTSO (hence can describe a valid
interaction on x for instance)

wr0
1 · ok · re0 · 1 · re1 · 0

Weak memory models using event structures · Simon Castellan 19 / 25

Example

Remember the program at the beginning:

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

The following is a valid trace of cellTSO (hence can describe a valid
interaction on x for instance)

wr0
1 · ok · re0 · 1 · re1 · 0

Weak memory models using event structures · Simon Castellan 19 / 25

Example

Remember the program at the beginning:

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

The following is a valid trace of cellTSO (hence can describe a valid
interaction on x for instance)

wr0
1 · ok · re0 · 1 · re1 · 0

Weak memory models using event structures · Simon Castellan 19 / 25

III. The first-order case

Filtering out the higher-order hop

Weak memory models using event structures · Simon Castellan 20 / 25

Getting rid of game semantics

I To study the weak memory aspects, the first-order is enough.

→ Simpler presentation of the ideas in the first-order
fragment?
(terms of the form x : ref, y : ref ` t : com)

I Eliminate game semantics bureaucracy:

I Consider the projection on the left-hand side (sequence of ref)

I We collapse reιx · k into one event R(ι,k)x

(Similarly writes are collapsed in W(ι,k)x)

Weak memory models using event structures · Simon Castellan 21 / 25

Overview of the model

I The model is parametrized over an architecture
A = (_A ,EA) where

I _A is a relation indicating which instruction ordering cannot
be relaxed.

I EA is an event structure describing the memory discipline.

I The semantics is in two steps:

1. The volatile part: which is the pure functional part (before
pre-composition with cell).
Defined by a simple induction on the program syntax using
_A .

2. The closed part: after pre-composition with cell.
Defined as the synchronized product with EA .

Weak memory models using event structures · Simon Castellan 22 / 25

Overview of the model

I The model is parametrized over an architecture
A = (_A ,EA) where

I _A is a relation indicating which instruction ordering cannot
be relaxed.

I EA is an event structure describing the memory discipline.

I The semantics is in two steps:

1. The volatile part: which is the pure functional part (before
pre-composition with cell).
Defined by a simple induction on the program syntax using
_A .

2. The closed part: after pre-composition with cell.
Defined as the synchronized product with EA .

Weak memory models using event structures · Simon Castellan 22 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_SC)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_SC)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_SC)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_SC)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

R(0)y W(0)x R(1)y R(0)y W(1)x R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_x86)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

R(0)y W(0)x R(1)y R(0)y W(1)x R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_x86)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x

R(0)y W(0)x R(1)y R(0)y W(1)x R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_x86)

Weak memory models using event structures · Simon Castellan 23 / 25

Examples of volatile semantics

For t =

 let s = x in x := s;
let r = y in y := r;
z := s + r ; ()

, we have:

R(0)x R(1)x R(0)y R(1)y

W(0)x W(1)x W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(_ARM)

Weak memory models using event structures · Simon Castellan 23 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x R(1)x R(0)y R(1)y

R(0)y R(1)y R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Volatile semantics for SC)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x R(1)x R(0)y R(1)y

R(0)y R(1)y R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x R(1)x R(0)y R(1)y

R(0)y R(1)y R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x R(0)y R(1)y

R(0)y R(1)y

R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Example with ETSO

x :=0 1;

let0 s = !x in
let0 t = !y in ()

y :=0 1;

let0 s ′ = !y in
let0 t ′ = !x in ()

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe s = s ′ = 1 ∧ t = t ′ = 0.

Weak memory models using event structures · Simon Castellan 24 / 25

Conclusion

Summary.
I We shown a few ideas how to model weaker memory model

using game semantics

I We used those ideas to give a parametric denotational
semantics for weak memory models, based on event structures.

Perspectives and future work.
I Adding barriers to the mix

I Link with existing semantics (eg. axiomatic semantics)

I Instruction semantics? (modelling a ASM-like language)

Weak memory models using event structures · Simon Castellan 25 / 25

