Weak memory models using event structures

Simon Castellan!

1LIP, ENS Lyon

April 3rd, 2016
GaloP 2016

Unexpected behaviours

A simple concurrent and imperative program:

x, y initialized to 0

x =11y =2

r< yll s+« x
shared variable - local register

Expected outcome: r Z0V s # 0.

Weak memory models using event structures - Simon Castellan

2/25

Unexpected behaviours

A simple concurrent and imperative program:

x, y initialized to 0

x =11y =2

r< yll s+« x
shared variable - local register

Expected outcome: r Z0V s # 0.
Wrong on modern architectures (x86, ARM, ...).

Weak memory models using event structures - Simon Castellan

2/25

Unexpected behaviours

A simple concurrent and imperative program:

x, y initialized to 0

r< yl| s+ x

x =11y =2
shared variable - local register

Expected outcome: r Z0V s # 0.
Wrong on modern architectures (x86, ARM, ...).

Weak memory models using event structures - Simon Castellan

2/25

Unexpected behaviours

Another simple program:
x =11y :=1
s+ x||s «vy

t— y |t + x

Expected outcome: s=s'=1=t=t'=1

Weak memory models using event structures - Simon Castellan

2/25

Unexpected behaviours

Another simple program:

x =11y :=1
s+ x| s «vy
t+— y ||t « x
Expected outcome: s=s'=1=t=t'=1

Wrong even without read exchange (Read Own Write Early).

Weak memory models using event structures - Simon Castellan 2/25

A need to specify the behaviour

What are the expected behaviour of a concurrent program?
— It depends on the architecture.

Architectures need to be specified:
» what instructions can be reordered?
» how are writes propagated from one thread to the other?

Weak memory models using event structures - Simon Castellan 3/25

A need to specify the behaviour

What are the expected behaviour of a concurrent program?
— It depends on the architecture.

Architectures need to be specified:
» what instructions can be reordered?
» how are writes propagated from one thread to the other?

To that end, manufacturers provide prosaic documents, but:
» ambiguity: behaviours that are not specified
» inconsistent: some observations may not be predicted.

Some architectures:
» SC (Sequential consistency): no reordering, sequential memory.
» ARM: reordering of instructions targeting different variables,
write caches.
> x86: ...

Weak memory models using event structures - Simon Castellan 3/25

Semantics saves the day

Semantics: Formalize mathematically the vendors specifications:
» get a (possibly computer-verified) proof of non-ambiguity,

» implement the specifications and mechanically test it against
real life architectures.

Two main types of semantics among existing models:

» operational semantics: executions are described by runs of an
abstract machine,

» axiomatic semantics: the notion of valid execution is
axiomatized.

Those models are called weak memory models.

Weak memory models using event structures - Simon Castellan

4/25

This talk

Outline of the talk:

1. Reminder on the interpretation of shared memory concurrency
in game semantics

2. How to change the interpretation of state to accomodate a
concrete model: x86-TSO

3. Using those ideas to give a concrete model for the first-order
fragment dealing with weak memory models.

Our challenge, x86-TSO0:

» A read and a write on different memory addresses can be
reordered inside a thread.

» A write need not be immediatly commited to main memory.
Once it is, it is available to all threads.

Weak memory models using event structures - Simon Castellan 5/25

I. USUAL MODEL OF IDEALIZED PARALLEL ALGOL

The good ol’ IPA

Weak memory models using event structures - Simon Castellan 6 /25

The syntax and semantics of IPA

IPA: Concurrent programming language with shared variables based
on the simply-typed A-calculus.

A B:=B|N|com|ref| A— B

M, N ::= ...PCF constructs...
| M| M:=N|M;N
| new x in t

[t

Existing games models:
> (Ghica-Murawski) Strategies as sets of non-alternating traces
» (C, Clairambault, Winskel) Strategies as event structures

Talk mostly agnostic about the representation.

Weak memory models using event structures - Simon Castellan 7/25

Interpretation of the state: pure part
Intepretation of var as N x [.y com:

re wWIro wWIry

n ok ok

Weak memory models using event structures - Simon Castellan 8/25

Interpretation of the state: pure part

Intepretation of var as N x [.y com:
re wWIro wWIry
n ok ok
With the following accessors [presented as innocent strategies]:

re: ref+-N wr: ref—+ N - com

q _run
- e
re : - q
< . B
n E S oon
™~ X
n W,
<~
ok
done

Weak memory models using event structures - Simon Castellan 8/25

Interpretation of the state: the cell strategy

To interpret the new construct (the only one to break innocence):

1. Define the set of traces cell as C 0 with:

C(k) =€
| re - k- C(k) (Reading from the cell)
| wrp - ok - C(n) (Writing on the cell)

2. Define [new x in t] = cell; [t] with x :ref -t : X
(up to surgergy)

A term x : ref -t : X sees x as volatile — reading on it can yield
any value.
Precomposing with cell enforces a particular memory discipline.

Weak memory models using event structures - Simon Castellan 9/25

Interpretation concurrency: ||

The strategy ||: com — com — com is not sequential but is still
innocent in a generalized sense.
— We have now a dag:

com — com — com

run
Q%/"
run run
< <
done done
dohe

Those dags can be composed inside CHO.

Weak memory models using event structures - Simon Castellan 10/25

Weakening the model
Problem: can we change the interpretation to match TSO?

Two issues:

» Handling instruction reordering: how to change re and wr to
model reorderings?

» Changing the memory discipline: the memory discipline of
TSO depends on the notion of threads absent from [PA.

— We need a new language to solve this.

Weak memory models using event structures - Simon Castellan 11/25

IT. TPA/X86: A LESS IDEALIZED PROGRAMMING LANGUAGE

A taste of metal in your IPA.

Weak memory models using event structures - Simon Castellan 12 /25

Syntax of IPA/x86
Reading/write to a reference is modified to handle reorderings:
M, N ::= ...PCF constructs...
|let, r = Ixin N|(x:=, M;N) ¢t € N is the thread-id
| new x int | M| N
There is no sequential composition anymore: operations take
directly their continuation:

INr:N,x:ref-N:com =M :ref
MElety r = Ixin N:com

I x:ref=M:ref = N:com
N=x:= M;N

New interpretation of ref:

re’

L L
wry o Wrj
n ok ok

Weak memory models using event structures - Simon Castellan 13/25

A dirty trick

How to interpret those new construct? Naive idea:
» let, : ref - (N — com) — com
» wr, : ref = N — com — com

Not enough to inspect of the continuation.

Weak memory models using event structures - Simon Castellan

14 /25

A dirty trick

How to interpret those new construct? Naive idea:
» let, : ref - (N — com) — com
» wr, : ref = N — com — com

Not enough to inspect of the continuation.

Use instead:
» let, : ref — (N — ref — com) — com
» wr, : ref - N — (ref — com) — com

with:
> [let, r =1xin N] =let, ® ([x], A\r.Ax.[N])
> [x:=, M; N] = wr, ® ([x], Ax.[N])

Weak memory models using event structures - Simon Castellan 14 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

Weak memory models using event structures - Simon Castellan 15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

run

Weak memory models using event structures - Simon Castellan 15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

ret /

Weak memory models using event structures - Simon Castellan 15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

ret /

<
n

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let
let,: ref = (N — ref - com) — com

ret /

<
n

T
q/

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let
let,: ref = (N — ref - com) — com

ret /

<
n

T
q/
<

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

reL/

&
T

qW

ot

M

NS

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

Weak memory models using event structures - Simon Castellan

15 /25

A sequential interpretation for let

let,: ref = (N — ref = com) — com

Still sequential. Can we use the space to do better?

Weak memory models using event structures - Simon Castellan

15 /25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

ret 44

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

ret 44

<
n

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

1,4%/
re run
i q/

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

ret 44/
v

q
<
n

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let
Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

run

ret 44/

v K

n q r
o
<~
S
4
S

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let

Idea: start the evaluation of both arguments in parallel.
let, : ref - (N - ref + com) — com

run

q ”A/
e
MS

=
(0]

w¢d st

Weak memory models using event structures - Simon Castellan 16 / 25

A concurrent interpretation for let

Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

<
n
<
v
S
“

S

Weak memory models using event structures - Simon Castellan

16 /25

A concurrent interpretation for let

Idea: start the evaluation of both arguments in parallel.

let, : ref - (N - ref + com) — com

ret 44/
<
%r; q Wdone
M
%@E/ done
~
s

Sy

S

Weak memory models using event structures - Simon Castellan

16 /25

A concurrent interpretation for let

Idea: start the evaluation of both arguments in parallel.
let, : ref - (N - ref + com) — com

run

A%/done
W \Adone
Sy

=
(0]

w¢d st

Two synchronizations points:
» One for data dependency
» One to sequentialize operations on x
The strategy for wr is done similarly (without data dependency).

Weak memory models using event structures - Simon Castellan 16 / 25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

Weak memory models using event structures - Simon Castellan 17 /25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

x : ref = y : ref — com

run

Weak memory models using event structures - Simon Castellan

17 /25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.
yi=or
x : ref = y : ref — com

run

e

re

Weak memory models using event structures - Simon Castellan

17 /25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

x : ref = y : ref — com

044/

re re

Weak memory models using event structures - Simon Castellan

17 /25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

x : ref = y : ref — com

run
$ L
k n

Weak memory models using event structures - Simon Castellan

17 /25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

x : ref = y : ref — com

run
$ i
k n
\A <
ard

Weak memory models using event structures - Simon Castellan

17 /25

Examples
letgr =Ix in

Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

x : ref = y : ref — com

Weak memory models using event structures - Simon Castellan

17 /25

Examples
letgr =Ix in
Take x : ref,y : ref = M = letgs =!y in : com.

yi=or

x : ref = y : ref — com

done

Weak memory models using event structures - Simon Castellan

17 /25

A strategy cell that represents a TSO memory

Instruction reorderings: check. What about relaxed memory?
— Update the grammar of valid traces. Now parametrized over:

> a global value n
» thread-local local values ;1 : N — N U {x}

C(u,n)==ce
| re" - pu(e) - C(u, n) (1(e) # %)
(Read from local cache)
| re" - n- C(p, n) (n(e) =)

(Read from the global memory)
| wry - ok - C(pfe < k], n)
(Write to local cache)

| Cule], (1)) (n(e) # %)

(Committing a write)

This gives a strategy cellrgg.

Weak memory models using event structures - Simon Castellan

18 /25

Example

Remember the program at the beginning:

x =0 1; y =0l
letg s =!x in letg s =1y in
leto t =y in () || letg ' =!xin ()

The following is a valid trace of cellrsg (hence can describe a valid
interaction on x for instance)

wry -ok-re’-1-rel-0

Weak memory models using event structures - Simon Castellan 19 /25

Example

Remember the program at the beginning:

x:=0 1; yi=oL;
letg s =!x in letg s =1y in
leto t =y in () || letg ' =!xin ()

The following is a valid trace of cellrsg (hence can describe a valid
interaction on x for instance)

wry - ok-re?-1-re! -0

Weak memory models using event structures - Simon Castellan 19 /25

Example

Remember the program at the beginning:

x =0 1; y =0l
letg s =!x in letg s =1y in
leto t =y in () || letg ' =!xin ()

The following is a valid trace of cellrsg (hence can describe a valid
interaction on x for instance)

wry -ok-re’-1-rel-0

Weak memory models using event structures - Simon Castellan 19 /25

Example

Remember the program at the beginning:

x =0 1; y =0l
letg s =!x in letg s =1y in
leto t =lyin () || letg ' =!xin ()

The following is a valid trace of cellrsg (hence can describe a valid
interaction on x for instance)

wrd -ok-re®-1-rel -0

Weak memory models using event structures - Simon Castellan 19 /25

I1I. THE FIRST-ORDER CASE

Filtering out the higher-order hop

Weak memory models using event structures - Simon Castellan 20/ 25

Getting rid of game semantics

» To study the weak memory aspects, the first-order is enough.
— Simpler presentation of the ideas in the first-order

fragment?
(terms of the form x : ref,y : ref - t : com)

» Eliminate game semantics bureaucracy:

» Consider the projection on the left-hand side (sequence of ref)

» We collapse re’ - k into one event r(H
(Similarly writes are collapsed in w(;”‘))

Weak memory models using event structures - Simon Castellan 21/25

Overview of the model

» The model is parametrized over an architecture
o = (=4, Eey) where
» — ., is a relation indicating which instruction ordering cannot
be relaxed.
> &4 is an event structure describing the memory discipline.

Weak memory models using event structures - Simon Castellan 22 /25

Overview of the model

» The model is parametrized over an architecture
o = (=4, Eey) where
» — ., is a relation indicating which instruction ordering cannot
be relaxed.
> &4 is an event structure describing the memory discipline.

» The semantics is in two steps:

1. The volatile part: which is the pure functional part (before
pre-composition with cell).
Defined by a simple induction on the program syntax using

2. The closed part: after pre-composition with cell.
Defined as the synchronized product with &, .

Weak memory models using event structures - Simon Castellan 22 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:
z:=54r;()

R)(P) R)(<1)

: :

o 0

S S
R&o) e Rg/l) Rgo) ANV Rg,l)
: L ! L
w§/0) wg/l) wgo) wg/l)
: L ! L
ng) gl) wgl) (22)
(—sc)

Weak memory models using event structures - Simon Castellan 23 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:
z:=54r;()

R)(P) R)(<1)

: :

o 0

N N
R&o) e Rg/l) Rgo) ANV Rg,l)
: L ! L
w§/0) wg/l) wgo) wg/l)
: L ! L
ng) gl) Wgl) (22)
(—sc)

Weak memory models using event structures - Simon Castellan 23 /25

Examples of volatile semantics

let s=xinx:=s;

Fort=|letr=yiny:=r,
z:=s+r;()
R
O

s N

R§,) «/\/vvvvvvvvvv\r R(l)

N o

W§,0) Wg,l)
L L
a0 o

(—»sc)

, we have:

Ry
L

(1))

N

Rﬁ)«/_v\/\/\/\/vvvvvv\rR()

. Y
de 4J7
W e
l L
Wgl) w(z2)

Weak memory models using event structures - Simon Castellan 23 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:

z:=s+r;()

R&o) ANV R&l)

L L

o 0

R'§/0) Rg,l) RE/O) R.§,1)

$ $ $ $

W W o ey

$ $ $ $

ng) gl) ng) w(z2)
(—sc)

Weak memory models using event structures - Simon Castellan 23 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:

z:=s+r;()

R&p) Rg;)

d N d N
R&p) gp) Ré}) R&p) £;)
l L d
Vép) wg}) Wﬁp)
l L 4
wgO) Vng) wgl)
(—xs6)

Weak memory models using event structures - Simon Castellan

RV

J

wit)

L

e

V4

23 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:

z:=s+r;()

R&p) Rg})

d N &N
R&p) gp) Ré}) R&p) £;)
l L d
Vép) wg}) Wﬁp)
! L
wgO) Vng) wgl)
(—xs6)

Weak memory models using event structures - Simon Castellan

RV

J

wit)

¢

e

V4

23 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:
z:=s+r;()
Ry Ry
BN S
0 0 R(1) o) 1
J7 M I J7 M J7
w(l) "
4J>x> P <;J>x>' J?B
W W) W
(—xs6)

Weak memory models using event structures - Simon Castellan 23 /25

Examples of volatile semantics
let s=xinx:=s;

Fort=|letr=yiny:=r; |, we have:
z:=s+r;()
M)
w©)
(—>ARM)

Weak memory models using event structures - Simon Castellan 23 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

D o
X & K &
RO 1+ g() R(yo) " Rg/l)
X <& < K & <+
R(yo) " Rgl) R(yo) " R(yl) RO @ RO a g0

(Volatile semantics for SC)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

oD o
X & K &
RO 1+ g() R(yo) " Rg/l)
X <& < K & <+
R(yo) " Rgl) R(yo) " R(yl) RO @ RO a g0

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

oD o
X & K &
RO A g() R(yo) " Rg/l)
X <& < K & <+
R(yo) " Rgl) R(yo) " R(yl) RO @ RO a g0

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

e WiV

< N L

R0 R(®) A p(V

< v X & v ¥
RO g® @ wp® RO e g®

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

e wy)

< <

e Rgl)

<+ < M
R(yo) " R(yl) RO e 1)

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

e wy)

< <

e R§1)

<+ < M
R(yo) " R(yl) RO e 1)

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

) wy)

< <

R0 R§/1)

<+ < M
R(yO) " Ry) R© g1

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

) wy)

< <

R0 R§/1)

<+ < M
R(yo) " R(y1) R© g1

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

e wy)

< <

e R§1)

<+ < M
R(yo) " R(yl) NORYSNCY

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

wg{l) W}(/1)

<

R{Y

< ¥

RO v g ORI

(Computing [p]$: A &)

Weak memory models using event structures - Simon Castellan 24 /25

Example with &7so

x =0 1; yi=ol
letg s =!x in letg s =1y in
leto t =!yin () || leto t' =!xin ()

e

X

<

R{Y
< ¥
RO v gD RO R p)

(Computing [p]$: A &)

We can observe s=s' =1At =1t =0.

Weak memory models using event structures - Simon Castellan 24 /25

Conclusion

Summary.

» We shown a few ideas how to model weaker memory model
using game semantics

» We used those ideas to give a parametric denotational
semantics for weak memory models, based on event structures.

Perspectives and future work.

» Adding barriers to the mix
» Link with existing semantics (eg. axiomatic semantics)

» Instruction semantics? (modelling a ASM-like language)

Weak memory models using event structures - Simon Castellan 25 /25

