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ABSTRACT. We show that a version of Martin-Lof type theory with an extensional identity
type former I, a unit type N1, Y-types, II-types, and a base type is a free category with
families (supporting these type formers) both in a 1- and a 2-categorical sense. It follows
that the underlying category of contexts is a free locally cartesian closed category in a
2-categorical sense because of a previously proved biequivalence. We show that equality
in this category is undecidable by reducing it to the undecidability of convertibility in
combinatory logic. Essentially the same construction also shows a slightly strengthened
form of the result that equality in extensional Martin-Lof type theory with one universe
is undecidable.

1. INTRODUCTION

In previous work [B, [6] we showed the biequivalence of locally cartesian closed categories
(Icces) and the I, X, II-fragment of extensional Martin-Lof type theory. More precisely, we
showed the biequivalence of the following two 2-categories.

e The first has as objects lcces, as arrows functors which preserve the lccc-structure
(up to isomorphism), and as 2-cells natural transformations.

e The second has as objects categories with families (cwfs) [8] which support exten-
sional identity types (I-types), X-types, Il-types, and are democratic, as arrows
pseudo cwf-morphisms (preserving structure up to isomorphism), and as 2-cells
pseudo cwi-transformations. A cwf is democratic iff there is an equivalence between
its category of contexts and its category of closed types.

This result is a corrected version of a result by Seely [13] concerning the equivalence of
the category of lcces and the category of Martin-Lof type theories. Seely’s paper did not
address the coherence problem caused by the interpretation of substitution as pullbacks [7].
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As Hofmann showed [9], this coherence problem can be solved by extending a construction
of Bénabou [2]. Our biequivalence is based on this construction.

Cwfs are models of the most basic rules of dependent type theory; those dealing with
substitution, assumption, and context formation, the rules which come before any rules for
specific type formers. The distinguishing feature of cwfs, compared to other categorical
notions of model of dependent types, is that they are formulated in a way which makes the
connection with the ordinary syntactic formulation of dependent type theory transparent.
They can be defined purely equationally [§] as a generalised algebraic theory (gat) [3], where
each sort symbol corresponds to a judgment form, and each operator symbol corresponds to
an inference rule in a variable free formulation of Martin-Lof’s explicit substitution calculus
for dependent type theory [11], [15].

Cwfs provide a basic theory of dependently typed n-place functions. We remark that
non-dependent cwfs, in which there is a fized set of types, are closely related to (cartesian)
multicategories, where the terms of the cwf correspond to multiarrows. A difference is
however that a multiarrow always comes with a finite list of input objects, whereas the
cwf-axioms do not force the input context of a term to be a list.

Cwfs are not only models of dependent type theory, but also suggest an answer to the
question what dependent type theory is as a mathematical object. Perhaps surprisingly,
this is a non-trivial question, and Voevodsky has remarked that “a type system is not a
mathematical notion”. There are numerous variations of Martin-Lof type theory in the
literature, even of the formulation of the most basic rules for dependent types. There are
systems with explicit and implicit substitutions, and there are variations in assumption,
context formation, and substitution rules. There are formulations with de Bruijn indices
and with ordinary named variables, etc. In fact, there are so many rules that most papers
do not try to provide a complete list; and if you do try to list all of them how can you
be sure that you have not forgotten any? Nevertheless, there is a tacit assumption that
most variations are equivalent and that a complete list of rules could be given if needed.
However, from a mathematical point of view this is neither clear nor elegant.

To remedy this situation we suggest to define Martin-Lof type theory (and other depen-
dent type theories) abstractly as the initial cwf (with extra structure). The category of cwfs
and morphisms which preserve cwif-structure on the nose was defined by Dybjer [§]. We
suggest that the correctness of a definition or an implementation of dependent type theory
means that it gives rise to an initial object in this category of cwfs (with extra structure).
Here we shall construct the initial object in this category explicitly in the simplest possible
way following closely the definition of the generalised algebraic theory of cwfs. Note however
that the notion of a generalised algebraic theory is itself based on dependent type theory,
that is, on cwf-structure. So just defining the initial cwf as the generalised algebraic theory
of cwfs would be circular.

Instead we construct the initial cwf explicitly by giving grammar and inference rules
which follow closely the operators of the gat of cwfs. However, we must also make equality
reasoning explicit. To decrease the number of rules, we present a “per-style” system rather
than an ordinary one. We will mutually define four partial equivalence relations (pers): for
the judgments of context equality I' = I/, substitution equality A -~y =+ : T, type equality
I' A=A and term equality I' F a = @’ : A. The ordinary judgments will be defined as
the reflexive instances. For example, I' - a : A will be defined as I'+a = a : A. There are
altogether 32 inference rules for the pure theory of cwfs: the first 8 rules express that we
define four families of pers; the second 3 rules that judgments preserve equality of contexts
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and types; the next 10 rules express the typing and congruence of the 10 cwf-operations;
and the final 11 rules are the conversion rules for these operations. In addition to the pure
theory of cwfs, we have 1 rule for the base type.

Our only optimisation is the elimination of some redundant arguments of operators.
For example, the composition operator in the gat of cwfs has five arguments: three objects
and two arrows. However, the three object arguments can be recovered from the arrows,
and can hence be omitted.

The goal of the present paper is to prove the undecidability of equality in the free lccc.
To this end we extend our formal system for cwfs with rules for extensional I-types, Ny, 3, 11,
and a base type. (Note that we have added the unit type N to the type formers needed
for the proof of biequivalence with lcccs. This is because we need to construct a democratic
cwf, where there is a bijection between types and contexts (see above). Therefore we need
the type Ny which corresponds to the empty context.) There are 5 rules for I-types, 3 rules
for Ny, 11 rules for 3, and 8 rules for II. We want to show that this yields a free lccc
on one object, by appealing to our biequivalence theorem. However, in order to use our
biequivalence it does not suffice to show that we get a free cwf in the 1-category of cwfs
and strict cwf-morphisms: we must show that it is also free (“bifree”) in the 2-category
of cwfs and pseudo cwf-morphisms. This proof is technically more involved because of the
complexity of the notion of pseudo cwf-morphism.

Once we have constructed the free lccce (as a cwi-formulation of Martin-Lof type theory
with extensional I-types, N1, 3, II, and one base type) we will be able to prove undecidability.
It is a well-known folklore result that extensional Martin-Lof type theory with one universe
has undecidable equality, and we only need to show that a similar construction can be
made without a universe, provided we have a base type. We do this by encoding untyped
combinatory logic as a context, and use the undecidability of equality in this theory.

Related work. Palmgren and Vickers [12] show how to construct free models of essentially
algebraic theories in general. We could use this result to build a free cwf, but this only shows
freeness in the 1-categorical sense. We also think that the explicit construction of the free
(and bifree) cwf is interesting in its own right.

Plan. In Section 2 we prove a few undecidability theorems, including the undecidability of
equality in Martin-Lof type theory with extensional I-types, II-types, and one base type. In
Section 3 we construct a free cwf on one base type. We show that it is free and bifree. In
Section 4 we construct a free and bifree cwf with extensional identity types, N, 2, II, and
one base type. Since this cwf is democratic we can use the biequivalence result to conclude
that this yields a free lccc in a 2-categorical sense.

2. UNDECIDABILITY IN MARTIN-LOF TYPE THEORY

Like any other single-sorted first order equational theory, combinatory logic can be encoded
as a context in Martin-Lof type theory with I-types, Il-types, and a base type o. The
context I'cy, for combinatory logic is the following:

k : o,
s : o,
0—0— o0,

axg : Hzy:o.I(o, k- -z -y, x),
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axs : Mzyz:o0.1(o,s-x-y-z, -2 (y-2))

The left-associative binary infix symbol “” stands for application. Note that k, s, -, axy, axs
are all variables.

Theorem 2.1. Type-inhabitation in Martin-Lof type theory with (intensional or exten-
stonal) identity-types, II-types and a base type is undecidable.

This follows from the undecidability of convertibility in combinatory logic, since the
type
I_‘CL H 1(07 M7 M,)
is inhabited iff the closed combinatory terms M and M’ are convertible. Clearly, if the
combinatory terms are convertible, it can be formalised in this fragment of type theory. For
the other direction we build a model of the context I'c, where o is interpreted as the set of
combinatory terms modulo convertibility.

Theorem 2.2. Judgmental equality in Martin-Lof type theory with extensional identity-
types, Il-types and a base type is undecidable.

With extensional identity types [10] the above identity type is inhabited iff the corre-
sponding equality judgment is valid:

F'c,FM=M :o

This theorem also holds if we add N; and Y-types to the theory. The remainder of the
paper will show that the category of contexts of the resulting fragment of Martin-Lof type
theory is bifree in the 2-category of lcces (Theorem [4.25)). Our main result follows:

Theorem 2.3. FEquality of arrows in the bifree lccc on one object is undecidable.
We remark that the following folklore theorem can be proved in the same way.

Theorem 2.4. Judgmental equality in Martin-Lof type theory with extensional identity-
types, 1l-types and a universe U is undecidable.

If we have a universe we can instead work in the context

X U,

kK X,

s X,
X—>X—->X,

axgy : Hoey: X. (X, k-x-y, z),
ars : Mzyz: X. (X, s-x-y-z,z-2-(y-2))
and prove undecidability for this theory (without a base type) in the same way as above.
Note that we don’t need any closure properties at all for U — only the ability to quantify

over small types. Hence we prove a slightly stronger theorem than the folklore theorem
which assumes that U is closed under function types and uses the context

X U,
z - (U, X, X — X)
so that X is a model of the untyped lambda calculus.
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3. A FREE CATEGORY WITH FAMILIES

In this section we define a free cwf syntactically, as a term model consisting of derivable
well-formed contexts, substitutions, types and terms modulo derivable equality. To this
end we give syntax and inference rules for a cwf-calculus, that is, a variable-free explicit
substitution calculus for dependent type theory.

We first prove that this calculus yields a free cwf in the category where morphisms
preserve cwf-structure on the nose. The free cwf on one object is a rather degenerate
structure, since there are no non-trivial dependent types. However, we have nevertheless
chosen to present this part of the construction separately. Cwfs model the common core of
dependent type theory, including all generalised algebraic theories, pure type systems [1],
and fragments of Martin-Lof type theory. The construction of a free pure cwf is thus the
common basis for constructing free and initial cwfs with appropriate extra structure for
modelling specific dependent type theories.

In Section [3.1| we start by recalling the definition of cwfs, the associated morphisms —
both those preserving structure in the strict sense and up to isomorphism — and some related
definitions and notations. In Section [3.2] we introduce our syntax and inference rules. In
Section we show that these inference rules give rise to a free cwf, in the category of
cwfs and strict cwf-morphisms. Finally, in Section we prove that our free cwf is also
bifree in the 2-category of cwf-morphisms preserving structure up to isomorphism.

3.1. The 2-category of categories with families. The 2-category of cwfs and pseudo-
morphisms which preserve cwf-structure up to isomorphism was defined in [5] 6]. Here we
only give an outline.

Notations. We write Fam for the category of families of sets: objects are families of sets
(Xi)ier and maps from (X;)ier to (Yj)jes are pairs (f : I — J,(fi : Xi = Yy())ier). In a
category with families, contexts and substitutions form the objects and arrows of a category
C. The set of objects will be written Ctxe and the set of morphisms from A to I'" will be
written Subc(A,T'). Types and terms over a context I' form a family (Tme(I', A)) acTy,T,
and substitution gives rise to a functorial action on such a family. Thus we have a functor

T :C° - Fam
The action of T' on objects is TT' = (Tm¢(I', A)) acTy,.r, and its action on a type A
is written A[]: if v € Sube(I',;A) and A € Ty(A), then Aly] € Tyc(I'). Similarly, if
a € Tme(A, A), we write a[y] € Tme (T, A[y]) for the functorial action of 17" on a.

Definition 3.1 (Category with families). A cwf is given by a category C and a functor
T : C°? — Fam together with the following chosen structure:

o (Empty context) C has a terminal object 1.

o (Context comprehension) For each A € Ctxe and A € Ty, (A) there is the extended
context A.A € Ctxc with a substitution p, € Sube(A.A,A) and a term g4 €
Tme(A.A, Alpal), such that for every pair v € Sub¢(I', A) and a € Tme(T', A[y])
there exists a unique

(v,a) € Sube(I', A.A)
such that p4 o (y,a) =y and qa[(7y,a)] = a.
When talking about cwfs, we will often refer only to the base category C and keep the
rest of the structure implicit.
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Note that with the notation Ty, and Tm¢ there is no need to explicitly mention the
functor T when working with categories with families, and we will often keep it implicit.
Given a substitution v : A — T', and A € Ty,(T'), we write v 1 A or 4y (when A can be
inferred from the context) for the lifting of v to A: (yop,q) : A.A[y] — T".A.

The indexed category. In [5 [6] it is shown that any cwf C induces a functor T :
C°P — Cat assigning to each context I' the category whose objects are types in Ty, (I") and
morphisms from A to B are substitutions ¢ : I'.A — I'.B such that po ¢ = p — those are in
bijection with terms of type I' - A+ B[p|. The functorial action of T is given by

T(7)(¢) = (p,alpo (v T A)]) : A A[y] = A.B[y]

fory: A —T.

Any morphism ¢ in TT from a type A to a type B induces a function {¢} : Tme(I', A) —
Tme (T, B) which is defined by

{¢}(a) = qlpo (id,a)]
We will use this construction when transporting terms through isomorphism of types
0 : A= B, that is, isomorphisms in TI'. We note the following:

Lemma 3.2. Foranyy: A =T, p:T.A—T.B in TT, and a € Tme(A, Alv]),

{T()(p)}a) =alpo (v,a)]
Proof. Immediate from the definition. OJ

Definition 3.3 (Pseudo cwf-morphisms). A pseudo-cwf morphism from a cwf C to a cwf
C' is a pair (F,0) where F : C — C’ is a functor and for each T' € Ctx¢, or is a Fam-
morphism from TT to T'FT preserving the structure up to isomorphism. In particular
there are isomorphisms

pra: F(I.A) = FI.FA
Oay: FA[Fy] =Zpr F(A[Q]) (for y:I' = A)
!F : 1 = F1

satisfying some coherence diagrams, see [6] for the complete definition.

Since or is a Fam-morphism from (Tme (T, A)) aery. (1) to (Tmp(FT, B))pery,(Fr) it
has an action both on types and on terms. We write F'A for the image of A by the function
Ty (I') — Typ(FT') induced by or, and Fa for the image of a € Tme¢(I', A) through the
function Tme(T', A) — Tmp(FT, FA) induced by or. As for cwfs, we will often refer to
a pseudo cwf-morphism (F, o) just by F', keeping o implicit. This goes in line with the
notations introduced above, which do not mention o.

A pseudo cwf-morphism is strict whenever 64 4 and pr 4 are both identities and F'1 = 1.
Cwfs and strict cwf-morphisms form a category CwF.

Definition 3.4 (Pseudo cwi-transformation). A pseudo cwi-transformation between pseudo
cwi-morphisms F' and G is a pair (y,1) where ¢ : F' = G is a natural transformation, and
for each I' € Ctx¢ and A € Ty (I'), ¥r 4 is a type isomorphism F'A =pr GA[yr]| satisfying:

a —1
Yr, A

£ +
ora = FT.A) 222 FrFA 252 FT.GAlr] 25 ar.aa 224 q(r.A),
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This means in particular that 1 is uniquely determined from ¢. However, it matches
our inductive proof later on to have both ¢ and 1 explicitely in the definition, with this
coherence diagram. This definition corrects the one given in [6]; see Appendix |A] for a
discussion on that. We will write CwF for the resulting 2-category.

3.2. Syntax and inference rules for the free category with families.

3.2.1. Raw terms. In this section we define the syntax and inference rules for a minimal
dependent type theory with one base type o. This theory is closely related to the generalised
algebraic theory of cwfs [§], but here we define it as a usual logical system with a grammar
and a collection of inference rules. The grammar has four syntactic categories: contexts
Ctx, substitutions Sub, types Ty and terms Tm.

ecCtx == 1|IA

y€E€Sub = oy |idr|(Or|pal{r.a)a
AeTy == ol Ap]
a€Tm == aly]|qa

These terms have as few annotations as possible, only what is necessary to recover the
domain and codomain of a substitution, the context of a type, and the type of a term:

dom(y0v') = dom(v') cod(yo7) = cod(y)
dom(idr) =T cod(idr) =T
dom(()r) = T cod(()r) 1
dom(pa) = ctx-of (A4).A cod(pa) = ctx-of(A)
dom({y,a)4) = dom(y) cod((v,a)4) = cod(7).4
ctx-of(0) =1 type-of (a[y]) = (type-of(a))[]
ctx-of (A[7]) = dom(7) type-of(qa) = Alpa]

These functions will be used to define the interpretation.

3.2.2. Inference rules. We simultaneously inductively define four families of partial equiv-
alence relations (pers) for the four forms of equality judgments:
r=I"F r-A=A4 AFvy=+":T 'Fa=d:A

In the inference rules which generate these pers we will use the following abbreviations for
the basic judgment forms: I' - abbreviates I' =T' -, ' - A abbreviates'F A=A, AF~:T
abbreviates A~y =~ :T,and I' - a : A abbreviates' - a = a : A. The inferences rules are
divided into four kinds: per-rules, which axiomatise symmetry and transitivity of equality;
preservation rules, which express that equality preserves judgments; congruence rules for
operators with respect to equality, and conversion rules.

Note that our syntax is annotated in order to ensure that a raw term has a unique (up
to judgmental equality) type given by the function type-of, and that a type has a unique
(up to judgemental equality) context given by the function ctx-of. Similarly, dom and cod
return the unique domain and codomain of a substitution.
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Per-rules for the four forms of judgments

r=Ir'r I'=T1"F =1t AF~y=+":T AR+ =+":T
r=1"+r I'=TF AF~y=4":T
AFy=+":T rA=A4 A =A4" A=A
AFy =~:T r-A=A4" A=A
'Fa=d:A 'kFd =d":4 'Fa=d:A
'Fa=d":A I'Fad =a:A

Preservation rules for judgments

r=r'r A=AF F'Fy=+":A r=r't+ r-A=A4
I'Ey=7+":A I'-A=A
r=1r'+ r-A=A4 l'rFa=d:A
I'rFa=4d: A

Congruence rules for operators and the base type
r=I"F A=A

1=1F TA=T"AF 1Fo=o0
rA=A4 AF~y=+":T r=r'tr r=r'tr
A+ Aly] = A'[Y] ['kidpr =idp : T - {r={p:1
r6=46¢:A AFy=+:0 r=A=4
'Fyod=49"0d:0 FNAkFpa=pa:T

FrFA=A AFy=+":T Ata=ad: A}
A {y,a)a=(y,d)p :T.A

'Fa=d:A AF~y=4+":T A=A
At aly] =d[y]: AR DAl qa=qu : Alpa
Conversion rules
AF6:0 ko6 A ZEFy:T FE~y:A 'E~:A
EF(#od)oy=0o(don):0 I'Fy=idaovy: A 'y=~o0idr:A
r-A AF~:T OFI: A I'+HA
© = Ay o d] = (A[Y])[] ' Alidr] = A
'a:A AbF~y:T OF§: A l'Fa:A 'E~:1
O Faly o d] = (aly))[0] - (AYDI] I'Falidr] =a: A IEy=(r:1
r-A AbF~:T At a: Al r-A AF~:T At a: Al
Abpac(y,a)a=~v:T At qa[(y,a)a] = a: A[]
AkF~:T.A

AF~y=(paovy,qa[7])a:T.A
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Lemma 3.5. We have the following:

e [fT'F A is derivable, then T' = ctx-of (A) F is also derivable.
e [fT'F a: A is derivable, then T' = ctx-of (A) F and I' = A = type-of(a) are derivable.
o I[f A~ :T is derivable, then A = dom(y) F and I" = cod(y) F are derivable.

3.2.3. The syntactic cwfT. We can now define a term model as the syntactic cwf obtained
by the well-formed contexts, substitutions, types, and terms, modulo judgmental equality.
We use brackets for equivalence classes in this definition. (Note that brackets are also used
for substitution in types and terms. However, this should not cause confusion since we will
soon drop the equivalence class brackets.)

Definition 3.6. The term model T is given by:

o Ctxy ={I' | T'F}/=F, where ' =¢T" if I' = I"" |+ is derivable.

e Subr([['],[A]) = {y | T Fv: A}/=L where v =L 4/ iff [ -~ =4": A is derivable.
Note that this makes sense since it only depends on the equivalence class of T’
(morphisms and morphism equality are preserved by object equality).

o Ty (I')={A | T+ A}/ =1 where A=V BifT+H A = B.

e Tmy([I',[A]) ={a | TFa: A}/ 25 where a :5 a ifTFa=4d:A.

The cwf-operations on 7 can now be defined in a straightforward way. For example, if
AFO:0,TFJ§: A, we define [0] of [§] = [0 o ¢], which is well-defined since composition
preserves equality.

3.3. Freeness of 7. We shall show that T is a free cwf on one base type, in the sense that
for an arbitrary cwf C and type oc € Ty.(1¢), there exists a unique strict cwf morphism
T — C which maps [0] to o¢. Such a morphism can be defined by first defining a partial
function for each sort of raw terms (where Ctx denotes the set of raw contexts, Sub the set
of raw substitutions, and so on defined by the grammar of Section , cf Streicher [14].

[-] : Ctx — Ctx¢
[-] : (v:8ub) — Subc¢(dom(y),cod(v))
[-] : (A:Ty) = Tyc(ctx-of(A))
[-] : (¢t:Tm) — Tme(ctx-of(type-of(t)), type-of(t))
We use the notation (z € A) — B(x) for the partial dependent function space, that is,
the set of partial functions f which map =z € A to f(x) € B(x) whenever f(z) is defined.

Note that we use the same notation for all four interpretation functions. These partial
interpretation functions are defined by mutual induction on the structure of raw terms:

[ = 1 [Vorl = [VIeclvl  [Or] = (O
[T.A] = [I.c[A] [iar] = (ide)yn [a[¥]] = T[alll"le

[o] = oc [(v,a)al = ([v], [al)e laal = (ac)p
AT = [Alle [pal = (pe)ag

Partiality arises because, for instance, [v'] o¢ [v] is only defined when [+] and [v] are
defined and dom([y']) = cod([y]). However, we can prove by induction on the inference
rules that the interpretation of equal well-formed contexts, equal well-typed substitutions,
equal well-formed types, and equal well-typed terms are always defined and equal:
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Lemma 3.7.
o IfT' =T"+, then both [I'] and [I'] are defined in Ctxc, and equal.
o IfAFy=+":T, then [v] = [7'] € Sube([A], [T']) are defined and equal.
o I[fTH A=A, then [A] = [A'] € Tyc([T]) are defined and equal.
o [fTFa=4d:A, then [a] = [d'] € Tme([T], [A]) are defined and equal.

It follows in particular that if we have I'  (which abbreviated I' = I' F), then [I']
is defined — and likewise for the other reflexive judgements. Hence, we can define total
interpretation functions on the term model by restricting the partial interpretation function
to the well-formed contexts, etc, and then lift it to the quotient:

[-] : Ctxyr — Ctxc

=

i) ¢+ Subr([L[A]) — Sube([[T] [IAID)

Iy,
[l = Tyr(T) = Tye([T)
[l o Tr([0),[A4]) — Tme ([T, [[All )
by
7m = [I1]
ﬂ[’Y]]][r],[A] = [l
[[Ally = [4]

Iy = lal
which is well-defined by Lemma [3.5

This defines a strict cwf morphism 7 — C which maps [0] to oc. In order to prove
that it is unique, we assume that F' : 7 — C is another strict cwf morphism, and prove
by induction on the inference rules (the pers) that if I' = I + then F[I'] = [[I], etc.

For example, 1 = 1 F and we prove F[1] = 1¢ = [[1]] by preservation of the terminal
object. The other cases are similarly straightforward, since strict cwf-morphisms preserve
the structure on the nose.

This concludes the proof of our theorem:

Theorem 3.8. T is a free cwf on one object, that is, for every other cwfC and oc € Tyq(1¢)
there is a unique strict cwf morphism T — C which maps [o] to oc.

It is in fact the free cwf on one object up to isomorphism, since any two free cwfs are
related by a unique isomorphism.

From now on we will uniformly drop the equivalence class brackets and for example write
T for [I']. There should be no risk of confusion, but we remark that proofs by induction on
syntax and inference rules are on representatives rather than equivalence classes.

3.4. Bifreeness of 7. We eventually wish to add the type formers Ny, >, 11 and I, and
construct the free cwf which supports these type formers. However, as we explained in the
introduction, this freeness property will not transport to lcces. Indeed, our correspondence
between cwfs (with support for these type formers) and lcces is a biequivalence [6] rather
than an equivalence, and freeness is not preserved by biequivalence. Moreover, so far we
proved that 7T is free in the category of cwfs and strict cwf-morphisms which preserve cwi-
structure on the nose. In lcces, finite limits and local exponents are usually not treated
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as extra structure, but as properties of categories. Thus functors can only preserve these
properties up to isomorphism, since it would not even make sense to say that these properties
are preserved on the nose. As a consequence, in our biequivalence result we moved to pseudo
cwf-morphisms (Definition that only preserve structure up to coherent isomorphism.
The cwf T is not free in the category of cwfs with pseudo cwf-morphisms — in fact, there
is no free cwf in this category. However, we can move to a 2-categorical setting and show
that 7 is bifree.

We recall that an object I is bi-initial in a 2-category iff for any object A there exists
an arrow I — A and for any two arrows f, g : I — A there exists a unique 2-cell § : f = g¢.
It follows that @ is invertible, and that bi-initial objects are equivalent.

Definition 3.9. A cwf C is bifree on one base type iff it is bi-initial in the 2-category CwF?:

e Objects: pairs (C,oc) where C is a cwf and oc € Tyq(1¢).

e Morphisms between (C,oc) and (D,op): pairs (F,ar) of pseudo cwf-morphisms
F : C — D and isomorphisms ap : F(oc)[lr] = op in the category of closed types
Tp(1p) (recall that !p: 1 — F1).

o 2-cells between the morphisms (F,ar),(G,ag) : (C,oc) — (D,op): pseudo cwi-
transformations (¢,%) from F to G satisfying 1o, = ag' o ap : F(oc)['r] =4,
G(oc)[!al-

The rest of the section is dedicated to the proof of the following:
Theorem 3.10. T is a bifree cwf on one base type.

We have shown that for every cwf C, and oc € Tyc(1¢), the interpretation [—] is a
strict cwf-morphism mapping o to o¢c. Hence it is a morphism in CwF°. It remains to
show that for any other morphism F': 7 — C in CwF?, there is a unique 2-cell (pseudo

cwi-transformation) (p,%) : [—] — F, which is an isomorphism. This asymmetric version
of bi-initiality is equivalent to that given above.

3.4.1. Ezistence of (y,1). We construct (¢,1) by induction on the inference rules and
simultaneously prove their naturality properties:

o If ' =T I, then there exists an isomorphism @r = pp : [[] = FT.

o If ' A= A’ then there exists an isomorphism a4 = 4 : [A] =m0 FAlepr].

e If '~ =+":A, then Fyoor :gvoLT]].

e IfI'a=d : A, then Falpr] = {¢a}([a]).
It follows that (p,) is a pseudo cwi-transformation. We show some crucial cases:
Empty context. I’ preserves terminal objects and we let 1 = g : m =1¢ = F1.
Context extension. By induction, we have 14 : [A] = FAer] in T(T). We define ¢r 4
as the following composition of isomorphisms:

-1
[T.A] = [T.[A] ¥ T FAlpr] 2% pr.ra 04 F(T.A)

We remark that this case of the induction concerns the rule that not only expresses the
well-formedness of context extension, but more generally, that context extension preserves
equality. So officially, we need to prove that ¢or = @p/ : [I'] = FT and ¢4 = ¢4 : [A] %m

FAlpr| entail ¢r 4 = ¢rr.a which follows immediately. We also remark that we have
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dropped the official index A in p4 and g4 in the above definition. Both remarks apply in
other cases too.

Base type. By definition, F is equipped with ap : o] = F(0)['r]. We define 9, = ap :
[o] = F(o)['F] in Tyc(1).

Type substitution. Let I'- v : A and A + A. The induction hypotheses are pa o [7] =
(Fy)opr and 14 : [A] = = P Alpa]. Since T is a contravariant functor, T[v] is a functor
from T[A] to T[] thus,

T(VD)(@a) : [AN] 2 FAlpa © Y]] = FA[FY[er]
by induction hypothesis on 7. So we define

Yap) = T(er)(0a,) o T(MD(#a) : [AN] 2 (F(AR]))ler]

Projection. We have ' A F p4 : I' and need to check that Fps o or.4 = ¢r op. This is a
simple calculation:

Fppowra=Fpo pii‘ o{prop,q) o (definition of ¢r 4)
=po(prop,q)otha (property of pr 4)
=propots=@rop (because 14 is a map in T[T])

Extension. Assume we have '~ : Aand I' -t : A[y] so that (v, t) 4 is a morphism from "
to A- A. Using Proposition 4 of [6], we get that F(v,t) s0pr = px'4 0 (F7, {GZ{/}(Ft» opr.
After calculation, we get

F(y,t)aopr = pg,A (F, {9A7}(Ft)> o r
= paac (Fyoer, {055} (Ft)ler])
(Lemma 7 of [6])
= pa o (Fyoer {T(er)(@5:) HEter])
(I.H on v and t)

= paac (ea o DIAT(er)(03,)} {Yap }ID))
(definition of 9 4(,)

= paac a0 VAT (wa) HIED))
(definition of T)

paa o (pao vl alva o (I, TEDD)
Para© <90A op,q) ot o [{v,t)a]
Paa 0Pk oao[(v,t)a]

oo [(v,t)al

Term substitution. Assume we have I' -~ : A and A ¢: A. Unfolding the definition of
YAl We get:
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{©apItD) = {T(er)(0a,) Y AT(MD @A) }[EHID)
= {T(er)(04,) (T[] (¥2) YD)
(Lemma 7 of [6]) -
= {T(er)(0a-)}{La DI
(ILH. on t) o
= {T(er)(02,)}(Ft)[pa o [¥]])
(LH. on 7)

= {T(er)(0a,)}((Ft)[EFy o or])
(Lemma 7 of [0])
)

= {0a, 3 (FtE])er]
(Definition of pseudo cwf-morphisms)

= F(hDler]

Variable. Assume we have I'- A q4 : A[p]. Unfolding the definition of 14 yields, after
some simplifications:

{thap)}(@a) = al0ap o (er,alta o (p, @)])]
((p,q) = id)
= q[0ap © (¢r.4,9[1a])]
We need to prove that this is equal to:

Fqler.al ={0ap} (alpr,al) [er.4]
(definition of pseudo cwf-morphism)
= q[fap o (id,q[pr,4]) © ¢r.A]
= q[fap 0 (¢r.a,qlpr.a o ¢r.al)]
(definition of ¢r 4)
[0ap 0 (#r.a,q[(wrop,q) otha)]
(04 © (¢r.a,a[al)]

I
Qo0

Thus the equality holds.

Functoriality of substitution. Assume we have ' -~ : A and A F ¢ : ©. We want to
show the equality ¥ a5)(y] = Ya[s04] and Y4340 = Y4 for © = A. The second equation is

easy: by functoriality of T, T([id])()4) = 14 and properties of F', 64 ;4 = id.
For the other equation, unfolding the definitions gives:

Yapip) = T(OD(TS]) (4) © T(a)(0a,5)) © T(eor)(0a,)
= T([]) (T@D @A) o THD (Tea)Bas)) o T(er)(6a,)
(functoriality of T and induction hypothesis on )

= T([6] o [v[) (¥4) © T(er)(T(F7)(0a5)) © T(spr)(0as)
(functoriality of T'(¢r))

= T([3] o [+])(v4) © T(eor)(T(E7)(8a5) © (Ba,4))

(coherence for 6)
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= T([6] o [v])(14) © T(pr) (0 4,507)
= Y A[50n]

3.4.2. Uniqueness of (p,1). Let (¢',1") : [] — F be another pseudo cwf-transformation in
CwF°. We prove the following by induction:

o If ' =T"F, then ¢r = ¢
o IfTF A=A then vy = o/,

Empty context. There is a unique morphism between the terminal objects m and F'1,
/
S0 Y1 = ¥7.

Context extension. Assume by induction ¢r = ¢ and ¢4 = ¢;. By the coherence law
of pseudo cwi-transformations, we have ¢ 4 = pp 14 o 80/F+ o ¢!y from which the equality
or.a = ¢ 4 follows.

Type substitution. Assume we have A+ A and I' v : A, and consider 4}, and wﬁqm.
By Lemma we have:

W) = T(er)(Bany) o T(IVD) (W)

and likewise for 1 4,). Since we know by induction hypothesis that or = o and Y4 = Yy,
it follows that 14, = wﬁ‘\h]'

Base type. The definition of 2-cells in CwF? entails ¢/, = a' : [o] — F([0]).
This concludes the proof that T is a bifree cwf on one object. In the next section, we
will prove that this result still holds in the presence of type constructors.

4. A FREE LCCC

This section will basically follow the plan of Section |3} We will first recall what it means
for categories with families to support the extra structure for I, Ny, II and X-types. Then
we will extend our cwf-calculus with these type constructors. Finally, we will also extend
our proofs of freeness and bifreeness. In particular, bifreeness will be transported by our
biequivalence [6]. It follows that the underlying category of contexts of the syntactic cwf
with extra structure is a bifree lccc.

4.1. Cwfs which support I, N, ¥ II. We recall here from [8, [6] what it means for a cwf
to support type constructors and prove a few properties of the corresponding combinators.

Definition 4.1. A cwf C supports extensional identity types iff it is equipped with the
following extra structure:

e Formation. If A € Tys(I') and a,a’ € Tme (T, A), then there is I(4, a,a’) € Tye(T).
e Introduction. If a € Tme(T, A), then there is r(a) € Tme (T, 1(A, a,a)).
e Elimination. If ¢ € Tme(T,1(A, a,a’)), then a = o’ and ¢ = r(a).

such that the following laws with respect to substitution are satisfied, for any ~v : A — I':

I(A7a7a/)[7] = I<A[7]7a[’7]7al['7])
r(a)ly] = r(a[y])
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Definition 4.2. A cwf C supports X-types iff it is equipped with the following extra struc-
ture:

o Formation. If A € Ty.(I') and B € Ty,(I".A), there is (A, B) € Ty.(I),

o Introduction. If a € Tme(I', A) and b € Tme(T, B[(id, a)]), there is pair(a,b) €
Time (T, (A, B)),

e Elimination. If ¢ € Tme(T,3(A, B)), there are fst(c) € Tme(T', A) and snd(c) €
Tme (T, Bl(id, fst(c))]) such that

fst(pair(a,b)) =

snd(pair(a,b)) = b

pair(fst(c),snd(c)) = ¢
and we also have stability under substitution. If v : A — I' then
S(A,B)ly] = (AR, Bl(yop,a)

pair(a,b)ly] = pair(aly], bja])

Bt(e)l] = fst(cl))
snd(c)[y] = snd(c[y])

Before going on to the definition of cwfs supporting Il-types, it is useful to recall a few
lemmas about 3-types on cwfs. First we recall from [6]:

Lemma 4.3. For any A € Tyo(T') and B € Ty (T'.A), there is an isomorphism:
xaB:T.AB—T.X(A,B)
such that po xa,B =poPp.
Proof. The isomorphism is defined by the following inverse substitutions:
(pop,pair(qlp],q)) : TIA.B—T.%(A,B)
((p,fst(q)),snd(q)) : I''¥(A,B) —-»T.A.B
An easy calculation shows that they are mutual inverses. L]

The type constructor ¥ can also be extended to act on morphisms in the adequate
fibres, in a functorial way. This is formalized in the following lemma.

Lemma 4.4. Let A, A’ € Ty,(T'), B € Tyq(I'.A), and B" € Tyo(I'.A"). Moreover, consider
morphisms fa : A — A’ in T(T) (ie. fa : T.A — T.A" such that po fa = p), and
f:B— B'[fa] in T(T.A) (ie. fp:T.A.B —T.A.B'[f4] such thatpo fg =p).
Then, defining:
%(fa, [B) : (p, pair(a[fa o (p, fst(q))], a[fB o {(p,15t(q)), snd(q))]))
we have X(fa, fB) : X(A, B) = X(A', B') in T(T"). Moreover, it is functorial in the following
sense. For fa, fp as above and g4 : A — A", gp : B' — B"[g4], then:

%(94,98) © (fa, fB) = X(ga © fa,T(fa)(9B) © fB)
Proof. Direct verification. O
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This strengthens Lemma 10 of [6], which states that the type constructor ¥ preserves
isomorphisms of types. We will also use the following lemma, which states compatibility of
the functorial action of ¥ with that of substitution.

Lemma 4.5. Let fa, fp be as in the lemma above. Then, for any v : A = I', we have:

T()(X(fa, f8)) = B(T(7)(fa), T(y T A)(fB))
Both are morphisms from S(A[y], Bly T A]) to S(A'[v], B'[y 1 4]) in T(A).

Proof. Direct calculation. OJ
Now, we go on to define what it means for a cwf to support II-types.

Definition 4.6. A cwf C supports II-types iff it is equipped with the following extra struc-
ture:
e Formation. If A € Ty,(I") and B € Ty,(I".A), there is II(A, B) € Ty.(I).
e Introduction. If b € Tme(T'. A, B), there is A(b) € Tme (I, II(A, B)).
e Elimination. If ¢ € Tme(T,11(A, B)) and a € Tme(T', A) then there is a term
app(c,a) € Tme(T, B[(id, a)]) such that

app(A(b),a) = b[(id, a)]
Aapp(c[pl,a)) = ¢
and we also have stability under substitution. If v : A — I' then

(A, B)h] = (AR, Bl{y o p, 9)])
A = Abl(yepa))
(app(c,a))[y] = app(ch], al])

Just like for X-types, II-types can be given a functorial action on the fibres.

Lemma 4.7. Let A, A’ € Ty,(T'), B € Ty¢(I'.A), and B' € Tyo(I'.A"). Moreover, consider
morphisms fa : A" — A in T(T) and fp : B[fa] = B' in T(T.A").
Then, defining:

II(fa, f5) = (p, AMalfs © ({(p o P, q),app(alp], a[fa o (p o p, D)])]))
we have I1(fa, fg) : II(A, B) — II(A’, B') in T(I'). Morever, the action of 11 is functorial,
in the sense that for fa, fp as above and g : A” — A’, gp : B'[ga] — B”, we have:

(g4, 98) o I1(fa, fB) = IL(fa © 94,98 © T(ga)([B))
Proof. Tedious calculations on cwf-combinators. L]

Just as for Y-types, the functorial action of II commutes with the functorial action of
substitution.

Lemma 4.8. Let fa, fp as in the lemma above, and v : A — T'. Then, we have:

T(7)(I(fa, f5)) = I(T(7)(fa), T(v T A)(f5))
where both terms are morphisms from II(A[y], B[y 1T A]) to TI(A'[y], B'[y T A4’]) in T(A).

Proof. Direct calculation. L]
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Definition 4.9. A cwf C supports Ny iff it is equipped with the following extra structure:

e Formation. There is N; € Tyq(1).
o Introduction. There is 0; € Tme(1,Ny).
e Elimination. For any ¢ € Tme(1,Nq), ¢ = 05.

We will be interested in cwfs that support N;. However, both the cwfs that come from
syntax (including 7) and the cwfs in correspondence with leces through our biequivalence
satisfy a stronger property: they are democratic.

Definition 4.10 (Democratic cwfs). A cwf C is democratic when for each context I' there
is a type I' € Ty, (1) with an isomorphism ~p : I' = 1.T".

Lemma 4.11. Let C be a democratic cwf. Then, it supports Ny.

Proof. We simply define Ny = 1. This type automatically has an inhabitant 01 = q[v1] €
Tme(1,1); its uniqueness is an easy consequence of the fact that 1 is terminal. L]

As a consequence we do not need to mention support for Ny for democratic cwfs . We
will show in Lemma[£.17 that in the presence of X-types and Ny, the syntactically generated
cwf is democratic.

For each of these type constructors, it is easy to define what it means for strict cwif-
morphisms to preserve them. We simply ask that everything — both type constructors and
the associated combinators — is preserved on the nose. For instance, we ask that

F(I'X(A,B)) = FT.X(FA,FB)

and F(pair(a, b)) = pair(Fa, F'b), etc..
However, as emphasized before, for the correspondence with lcces one needs notions of
cwf-morphisms that only preserve structure up to isomorphism.

4.2. Pseudo cwf-morphisms preserving structure up to isomorphism. We now re-
call the definitions of preservation of structure up to isomorphism for pseudo cwf-morphisms
from [6]. Note first that for cwfs which support X-types, pseudo cwf-morphisms automati-
cally preserve X-types.

Proposition 4.12. A pseudo cwf-morphism F from C to C', where both cwfs support %-
types, also preserves them in the sense that there is an isomorphism:

sap: F(S(A,B)) = S(FA, FB[prY])

such that projections are preserved up to isomorphism. For any term ¢ € Tme (T, X(A, B)),
or terms a € Tme(I', A) and b € Tme (T, B[(id, a)]).

F(fst(c)) fst({sa,B}(Fc))
F(snd(c)) = {05, ias(e)} (snd({s4,8}(F)))
Flpair(a,b) = {535 Hpair(Fa, {85}, HED)
Proof. Proposition 7 in [6]. ]
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On the other hand, neither the preservation of the other type constructors nor the
preservation of democracy is automatic. We recall the following definitions from [6].

Definition 4.13. Let C,C’ be cwfs supporting identity types and F' : C — C’ be a pseudo
cwf-morphism. Then, F' preserves identity types provided there is an isomorphism:
F(I(A,a,d")) 2 1(FA, Fa, Fa')
in T/(T).
Likewise, we have for democracy:
Definition 4.14. Let C,C’ be democratic cwfs, and F : C — C’ be pseudo cwf-morphisms.
Then, F preserves democracy provided there is an isomorphism
dr : F(T) = FT[{)]
in T’(1) such that the following diagram commutes:

FT o F(LT)

'YFF\L 00 p VPLT
1.FT <Y F1.FT[()] < F1.F(T)

We saw before that democratic cwfs automatically support Ny — likewise, pseudo cwi-
morphisms that preserve democracy automatically preserve Ny in the obvious sense.
Finally, we define preservation of II-types.

Definition 4.15. Let C and C’ be cwfs supporting II-types, and F' a pseudo cwf-morphism.
Then F preserves II-types iff for each types A € Ty.(I') and B € Ty,(I".A) there is an
isomorphism in T/(T):
iap: F(I(A, B)) = II(F(A), F(B)[pr 4))
such that for any substitution v : A — I', for any terms ¢ € Tm¢(A,II(A, B)[y]) and
a € Tme (T, A[y]), we have:
F(app(c, a)) = {05, ;. Happ({T' (FY)(ia,8) 0 054 ) .} (FC), {04 }(Fa)))

The definition of preservation of II-types for pseudo cwf-morphisms only require them
to preserve application. In fact, as remarked in [6], it is sufficient to ensure that abstraction
is preserved as well.

Lemma 4.16. If F : C — C' is a pseudo cwf-morphism preserving II-types, then it preserves
the abstraction combinator, in the sense that for any b € Tme(I'.A, B),

FA®) = {iz 5 A(FD)pr )
Proof. Immediate consequence of Lemma 2 of [6]. O

We now go on to extend our syntactic cwf 7 with all the extra structure mentioned
above, before proving that it is bifree.
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4.3. The syntactic cwf with extensional I, N;, >, and II. We extend the grammar
and the set of inference rules with rules for I, Ny, 3, and II-types:

A o=

a =

For each type we define its context:

| r(a) | 0 | t(4,a)| snd(A, A,a)| pair(A, 4, a,a)| app(4, A,a,a)| A(A,a)

ctx-of (I(a,a’)) = ctx-of (type-of (a))
ctx-of(N;) =1
ctx-of (3(A, B)) = ctx-of (A)
ctx-of (II(A4, B)) = ctx-of (A)
For each term we define its type:
type-of(01) = N1
type-of (fst(A,c)) =
type-of(sud(4, B,c) = B W%mmﬁwAm]
type-of (pair(A, B,a, b)) = 3(A, B)
type-of (r(a)) = I(a, a)
type-of (A(4, c)) = II(A, type-of(c))
type-of (app(4, B, ¢, a)) = B [(1dctx-of(a): @) 4]

Rules for I-types

'Fa=d:A F'Eb=0b:A 'Fa=d:A

'+ 1I(a,b) =1(d,b) I'kr(a) =r(d): (a,a)
I'kec:I(a,d) ['kec:1(a,a)
['+a=ad :type-of(a) I'Fe=r1(a):I(a,a)
'Fa:A 'Had:A AF~:T
A+ Xa,d')[y] = Kalv], a'[Y])
Rules for N;

1Fa:N;

1FN; =N, 1F0;=0;:N 1Fa=07:N;
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Rules for X-types
A=A rA-B=0 A=A I'ke=c:%(A,B)

'+ %(A,B)=X(4", B [+ fst(4,e) = fst(A', ) : A
P-A=A" TAFB=B Tre=d:%(A,B)
[+ snd(A, B,c) =snd(A', B',) : B[(idr, fst(A, c)) 4]
r-A=A "A-B=5 F'Fa=ad:A I'b="b": B[(idr,fst(4,c)) 4]
' pair(A, B,a,b) = pair(A’, B',d',b') : (A, B)
TFA T.AFB  Tra:A  Trb:B[(idp fst(A,c)) 4]
I': fst(A, pair(4, B,a,b)) =a: A

r-A A+ B FFa:A I'Eb: Bl(idr, fst(A4,c))4]

'+ snd(A, B, pair(A, B,a,b)) = b: B[(idr, fst(A, ¢)) 4]

'ec:X(A,B)
I'+ ¢ = pair(A, B, fst(A, c¢),snd(A4, B, c)) : (A, B)
A A+ B AbF~:T '-A I'kFe:X(A,B) AbF~:T
A FX(A4,B)l] = 2(Ah], Blv']) A fst(4, e)y] = fst(A[y], eh]) - A

T'FA I''A+B I'+c:X(A,B) Ab~:T
A+ snd(A, B, ¢)[y] = snd(A[4], B[y*], ¢[y]) : B[(7, fst(A, ¢)[7]) ]
I'A T.AFB Tra:A TFb:B[idr, st(4,c)a] AF~:T
A pair(4, B, a,b)[y] = pair(A[y], B[y"],aly],b[y]) : (A, B)[7]

Rules for II-types
A=A Ar-B=D A=A rArb=10b:B

I'+1I(A, B) =11(A, B) T'=AAb) =\AY):TI(A, B)
r-A=A4 I'A+-B=D ['ke=¢ :TI(A, B) 'Fa=4d:A
I'+app(A, B,c,a) = app(4’, B, ,d’) : B[(idr, a) 4]
rArbv: B 'kFa:A
'k app(A, B, A(A,b),a) = b[{(idr,a) ] : B[(idr,a) 4]
T+ c:TI(A, B) A T.AFB  AF~:T
I'= A(A, app(c[p], q)) = ¢ : TI(A, B) A FII(A, B)[y] = II(A[y], Aly 7))
F'kec:1I(A,B) AF~:T
AFANA D) = AAP] by ) : TI(A, B)[y]
I'kc:1I(A, B) 'a:A AbF~:T
A+ app(c, a)[y] = app(cl], al]) : Bl(y,a[7]) ]

It is straightforward to extend the definition of the term model 7 with I, Ny, X, and
II-types to form a cwf 7N supporting these type constructors. Although there are no
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grammatical construct and no inference rules corresponding to democracy we can prove the
following;:

Lemma 4.17. The cuwf TPNU> s democratic.

Proof. For any well-formed context I' - we define a type &y induction on the inference
rules. For 1, we have T = N; € Ty(1). For T.A I, we set T.A = (T, A[y;']). Construct-
ing the required isomorphism is immediate by induction using Lemma |4.3 []

It is straightforward to extend the interpretation functor and prove its uniqueness
(among strict cwf-morphisms). It is also easy to check that it preserves democracy.

Theorem 4.18. TINUEI 45 the free democratic cwf supporting I, %, I1 on one object.

We do not detail the proof of this theorem: in essence, it is a simplified version of the
proof of Theorem where all key isomorphisms are replaced by identities. Instead, we
go on to prove that just as 7, besides being free in the category of strict cwf-morphisms
(preserving structure), 7oNt>11 ig also bifree in the 2-category of pseudo cwf-morphisms
(preserving structure).

4.4. Bifreeness of THNU2I We now prove the key result:

Theorem 4.19. TUNUEI 4s the bifree democratic cwf supporting 1, 3,11 on one object.

This means that is bi-initial in the 2-category CWF;’E’H’O where objects are

democratic cwfs which support I, X, I1, and a base type o, and where morphisms preserve
these type formers up to coherent isomorphisms.

TLNLE

4.4.1. Existence of ¢ and ¢. We resume our inductive proof from Section treating
the additional inference rules for I, N1, > and II. We will first treat the type formation rules,
then the type substitution rules. The rules for conversion and substitution on terms are
straightforward, and not detailed.

Type formation rules. We start with the type formation rules for N, I, ¥ and II.
Unit type: Since F' preserves democracy and the terminal object it follows that:
1T212F121.F121.F(Ny)[p]
Write 17 for this type isomorphism.
Identity type: Assume I' - a,b,a’,b' : A. By induction hypothesis, we have 4 :
[A] %m FAlpr]. We know I-types preserve isomorphisms in the indexed category

(Lemma 10 of [6]) yielding (over [I']):

Ur(ap) : [1a, b)] = I([A], [a], [6])
= 1(FAler], {va}([al). {va}([0]))
= LI(FA[er], F(a)ler], F(b)[er])

We also have ¢y, ) defined in the same way. But ¢4 ) and ¢y, ) are two par-
allel type isomorphisms whose domain is an identity type —so q[11(4,p)] -1 q[d{(;,,b,)] €
Tme ([T].F(1(a,b))[er], I[A]lp], [a][p], [b][p])- It follows by the elimination rule for
identity types in a cwf that these are both equal to the reflexivity term, and that
Vi(ap) = Y1(a’,p)-
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Y-types: Assume that we have I' - A = A" and I'A + B = B’. By induction we
have the isomorphisms ¥4 = 4 : [A] =T FAlpr] and ¢p = ¢p : [B] ]
FBlpr. a]. We let:

TN R S WAYE) T _
Usap = [D-X(4,B)] = [T].X(FA[er], FBlpp Yy o ¢r'])

TerCan), 1] F(s(A, B))lgr]

It is clear by construction that ¥4 5) = ¥xar,Br)-
II-types: Consider I' - A= A" and I A+ B = B'. Define ¢4 p) as follows:

Iy T, ") (¥s)

[T.1I(4, B)] s (P Algr], FBlop Yy 0 91])

TeOUas) T P14, B))for)

It is clear by construction that ¥4 gy = Y, p)-

Type substitution rules. We now deal with the inference rules pertaining to the compat-
ibility of the types I, ¥ and II with substitution. There is no inference rule for compatibility
of N7 with substitution.

In order to deal with compatibility under substitution, it is convenient to start with a
few lemmas. In particular, we will use heavily the fact that 64, can be characterised with
a universal property.

Lemma 4.20. Let v :I' — A. The type morphism 64, is the only type morphism to make
the following diagram commute:

FF.F(AM)pﬂ FAR) L p(A.4)

TGA,V PA,A\L

FT.FA[F~] e FA.FA
8l

Proof. The diagram commutes by virtue of Lemma 8 of [6]. Moreover, by definition of type
substitution the following diagram is a pullback:

+
FI.FA[FY] —2 . PAFA
_
Pl lp
FT FA
Fry

Because 0 is an isomorphism and the diagram above commutes, the following is also a
pullback:

PA,AOF('Y+)OP1:7114[,Y]

FT.F(A[]) FA.FA
_
Pi lp
FT FA

Fry
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Thus it follows that there is a unique type morphism FA.FA[Fvy] — FA.F(A[y]) that
makes the diagram of the lemma commute by the universal property of pullbacks. []

Using that, we deduce two lemmas on the compatibility of 3-types and Il-types under
substitution.

Lemma 4.21 (Compatibility of ¥-types with substitution). For any A € Tyq(A),B €
Tyc(A.A) and v : T — A, the following diagram of type isomorphisms over FI' commutes.

0s4,B),

F(X(A, B))[F] k F(2(A, B)[)
T(F’Y)(SA,B)l isAm,Bhﬂ
S(FA, FB[pL)IF S(F(AR), F(Bly))[pot

( [pa.aDl W}E(GMT%}A [7]09/4,7)(03,#%)( (YD), FBIy Dler apl)

(1t is well-typed because of the diagram of Lemma

. . -1 -1
Proof. The diagram amounts to showing that x4 p), = S Al B+ © Z(GA»“Y?T(/)F,A[y] o
0a)(O0p~+)) o T(Fvy)(sa,p). Hence by Lemma it is enough to show that the right
hand side makes the corresponding diagram commute — which is an involved calculation. [ ]

Lemma 4.22 (Compatibility of II-types with substitution). For any A € Tyq(A),B €
Tyc(A.A) and v : T — A, the following diagram of type isomorphisms over FI' commutes.

Ori(a,B).y

F(II(A, B))[F] F(II(A, B)[v])
T(F’Y)(iA,B)i liAh],Bhﬂ
I(FA, FBlp;'4])[F7] L(E(AM), FBIDor )

H(H,Z,le(ﬂElAh])(GBW+))
Again, it is well-typed by Lemma [{.20,
Proof. The (quite involved) proof appears in Appendix ]

We now resume the inductive proof, and check the inference rules for stability of types
under substitution. We only have to handle the cases for 1,2 and II since N; has no
substitution rule.

I-types: Assume we have A - a,a’ : A and T' v : A. Because identity types are
extensional, they can be at most one isomorphism between identity types, hence

Y1(a0,010] = YL(AR]abla )
d-types: Assume we have A A+ Band ' F v : A. We want to prove equality of

Vs(a,B)] and Vs, By +)- Since T(¢r)(sap),Bly+)) is an isomorphism, it is equiv-
alent to show the equality of T'(¢r)(sajy,Bl+]) © ¥s(4,B) and T(er)(sap,Bp+) ©

V(AN B )
Calculating yields:

T(er)(sapy,B1+) © Ys(a,B)h]
= T(¢r)(sap),Bpr+) © Tler)(@sa,B),) © T([V]) (¥s(a,B))
(functoriality of T'(¢r))

= T(¢r)(sap].B0H+ © OsaB),) © T(IV]) (Ys(a5))
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(Lemma
= T(or)(2(0a,, T(Pp apy; © 044)(0.4+)) © T(FY)(s4,8)) © T(I]) (¥sa,5))
(induction hypothesis on )
= T(or)(2(0a,, T(Pp apy; ©044)(054+)) o T(VD(T(0a)(54,8) © ¥y, p)
= () (S0 T(05 Yy 0 04) 0.0 ) 0 T(RD (S, )
(functoriality of (-, -) — Lemmas [4.4] and
= S(T(er)(0a,5) © T([Y]) (¥a),
T(T([V]) (©a)) (T ) (T(pr gy © 04 (054+))) o T(FT) (¥8))
(definition of 1 4(,) and functoriality of T)
= 5 (daps Doy © 0 0 6 © TN O50) o T D))

(deﬁmtlon of ¢r 4py + cwf calculations)

= (Yap) Tpr ap) O5.4+) o THFD(5) )
E(bap) ¥By+)

[I-types.: The reasoning is analogous to the case of ¥ above, using Lemmas
and [£.22]

Term formation rules. The term formation rules are those for the introduction of 0y,
r(—), pair, fst,snd, A\(—) and app.

Unit: We need to prove that {¢7}(01) = F01[¢1], where 0; € Tme(1,1) is defined in
the proof of Lemma This is straightforward by the universal property of the
terminal object.

Reflexivity: Assume that I'-a =a’ : A. We need to check that

{¥1(a.a) }(x([a])) = F(x(a))[er]
By preservation of I-types we have an iso
[ F(I(A,a,a))[pr] = I(FAler], Faler], Faler]),

and by the reflection rule we must have {f}({%1(4,a)}(r([a]))) = {f}(Fr(a)[er]) as
they are both inhabitants of the identity type.

First projection: Assume we have ' A = A", T+ c= ¢ : ¥(A, B) from which we
deduce I' F fst(A, ¢) = fst(A’, ') : A. First, we note that F(fst(c)) = fst({sa,p}(Fc))
by Proposition Then, we calculate:

F(fst(c)er] = fst({sa,p}(F(c))ler]

(definition {-} + interaction fst/substitution)

= fst(alsa,p o (id, F(c))][¢r])
(definition functorial action of T')

= fst({T(epr)(sa,8) HF(c)[er]))
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(induction hypothesis on c)

= fst({T(¢r)(54,8)} {¥sa,m) )

(functoriality of {-})

= fst({T(¢r)(sa,8) o ¥s(a,p) )
(Unfolding definition of ¥x4 p))
= fst({Z (¢, ¥5) }([c]))
(Lemma
= qlva o (p, fst(q)) o (id, []))]
= {va}(fst([c]))

Second projection: Assume wehave' A= A'"T.AFrB=B'TkFc=:%(A,B)
from which we deduce:

I'+snd(A, B,c) =snd(A', B', ) : B{idr, fst(A, ¢)) 4]

The calculation follows the same pattern as the one for first projection: we first
apply preservation of the combinators by Proposition then calculate.

F(snd(c))ler] = {05, iar st(e))4 } (nd({54,8}(Fc)))[eor]
(propagation of ¢r and definition of T(¢r)(-))

= {T(pr) (05, (iartst(4,0)) 1)} (snd({T(r) (sa,8) } (Feler])))
(LH. on ¢, and definition of vx4 p))

= {T(er) (O jar (4.0 )} 0d({E (0, 95) )

(unfolding the functorial action of X)

= {T(¢r) (05,14 st(a.0)4) H@¥5 0 ((1d, st([c])), snd([e]))])
(definition T(-)(-))

= {T(¢r) (0B, 1ar sst(a.e) )Y {T([(Edr, B5t(A, ) al) (¥5)} (snd([c])))
(folding definition ¢B[<idr,f$t(A,C)>A})
= {¥Barsst(A.0) 41} (50d([]))

Pairing: Assume we have ' A=A T/ A-rB=B'Tta=d :A,andTFb=10":
B[(idr, fst(A, ¢)) 4]. From that, we deduce:

[ I pair(A, B, a,b) = pair(4’, B',d’, V) : ©(4, B)
We start by unfolding the definition of ¢5,4 ), then calculate:

{¥scam }pair(Tal, ToT)) = {T(er)(s35)} ({SWa, v} (pair([a], 1)) )
(Unfolding the definition of (14, 1))

= {T(pr)(s7'p)} (pair({wa([al), alés © (3¢, [a]), TPD)) )
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= {T(pr)(s7'5)} (pair({wa}(Ta), {T((14, [al))(¥5)} (D))
(definition of ¥ p((iq,a)]))

= {T(pr)(s3'5)} (pair({wa}([al) {T(0r) (05 say oy )Y B(30.00HTD)))
(induction hypothesis on a and b)

— {T(pr)(s7'5)} (pair(Faler] {T(er) (05 a0y ) HFOlT]))
(Lemma

= {5315} (pair(Fa. {65y, o) ) HED) ) [or]

(Proposition [4.12)
= F(pair(a, b))[er]

Abstraction: Assume we have ' - A = A" T"AF b =1V : B, from which we deduce
I'EAA,b) =\NALY)  TI(A, B).
We first unfold the definition of 114, p), and then calculate:

Wingam AED) = (Tler) i)} (M3 T ws)} AT
(unfolding II(—, —) and long simplifications)

= {T(er) (i3} (N} T 3')
(induction hypothesis on b)

= {T(er)(i,'p)} (M(Fbler.allvy')
(definition of ¢r 4)

= {T(pr)(i35)} (M(Fblop)y o ¢1))
(cwf simplification)

= {i2 s} A(Folpr 1)) [er]
(Lemma

= F(A(4,))[er]

Application: Assume that we have ' A= A'"T. A+ B =B TFc=¢:1(A,B),
and ' Fa=d : A, from which we deduce:

'+ app(A, B,c,a) = app(A’, B',c/,ad’) : B[(idr, a) 4]

First we use that F' preserves II-type (using also that 64 14 = id, which is one of
the coherence laws for pseudo cwf-morphisms), then calculate:

F(app(c,a))ler] = {0 (iar.a)4 } (aPP({ia,B}(Fc), Fa)) [¢r]
(pushing the substitution by ¢r inside)

= {T(er)(0B,(1ar,0)4)} (APPT(or)(ia,8)} (Feler]), Faler]))
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(induction hypothesis on ¢ and a)

~ {00 saray)} (39D UT o) (1) M D, )
(definition of ¥4 B))

= (Do) 500,00} (0PI T3 W)} ([, (0o} ([aD)))
(calculation of TI(v 1, T(¥ ") (¥B)))

= {T(or) Op,tar.a1)} (a [ T3 wn) 0 (14, {Ya}([a]), app([e] [a])) )
(cwf simplification)

= {T(er) Op,sar.00)} (a [125 0 (W3 © (1 {va} ([a])). app([e] [a]))])
(cwf simplification)

= {T(pr) (05, sar.0.)} (2|05 0 (10, Tal), app([e]. [el))])
(folding definitions)

= {T(er) (05 1ar.w.1)} ({T((3¢, TaD)) (¥5)}app([], [a]))

(deﬁnition of wBKidF,a)A)
= {¥B{(1ar.a) 4] } (aDP([€]; [a])))

Conversion, and substitution on terms. The last rules left to check are the conversion
rules, and the substitution on terms. We do not detail them, as they are all immediate
consequences of the corresponding rules for equality and the substitution on terms in the
cwf structure.

4.4.2. Uniqueness of ¢ and v. We resume the uniqueness proof from Section [3.4.2
Unit type. Since 1.N; = 1, uniqueness follows from the terminal object universal property.

Identity types. We need to show ¢i(A,a,a’) = Yraaa) : 1A a,a") = T.F(I(A, a,a"))[er].
By post-composing with the coherence isomorphism F(I(A,a,a’)) Zpr I(FA, Fa, Fa'), we
get a morphism between identity types. In an extensional type theory, identity types are
either empty or singletons, thus there is at most one morphism between two identity types
(which is an isomorphism). This implies that g4 4,4 = %(A,a,d)'

Y-types. By induction, we assume that ¢r ap = ¢ 4 g- By naturality of ¢/, we have
SDIZ(A,B) = F(XE}B) O Yh A g O XAB = ¢r.x(a,B)- Because ¢ is also natural, we can derive a
similar equation, hence x4 ) = 1[)’2( AB)"

[I-types. By induction we assume ¢r 4.5 = ¢ 4 g- It also follows from induction hypoth-
esis that or = ¢, ¥4 =¥}y and ¢¥p = Pj.
Let ev4 p be the evaluation map, a morphism in I'. A:

eva s = (p,app(q,alp])) : II(4, B)[p] — B
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Proposition 11 of [6] entails:

Lemma 4.23. Take B € Tyo(I'.A) in any cwf C with -types. The only automorphism f
of II(A, B) (in TT') such that T(p)(f) : T.AII(A, B)[p] = I".A.II(A, B)[p] satisfies evq p o
T(p)(f) = eva,p is the identity.

We will exploit this, and show that wﬁ(l A,B) © zpﬁ( AB) satisfies the condition. But first,

we prove that the 1) component of a pseudo cwi-transformation from [—] to F automatically
preserves evaluation, in the following sense.

Lemma 4.24. Let (¢, ) be any pseudo cwf-transformation from H to F'. Then, we have:
ev)y p © T(p)(Yri(a,p) = evas : [[AII(A, B)[p]] — [I'.A.B]

where we use an alternative evaluation map:

eV;l,B = 901:.{4_3 oF(evap)o ,01:}4,1-[(,473)[},] o 9H(A,B),p o 90;,4
[T.A].F(II(A, B))[¢r o p] — [I.A.B]
Proof. We calculate:
F(eva,B) © pry miiamp) © O11(a.8)p © 14 © T(P) (Yri(a 3)

= F(evap)o PElA,H(A,B)[P] oot 40T (pr.a)(Oriap)p) o T(P)(Yrcan))
(Lemma

= F(ev) © pr s 11 a.myjp] © P1a © VIi(AB) o
(Coherence of pseudo-cwf transformations)

= F(ev)o Pr.A.T(A,B)[p]
(Naturality of )

= YT.A.BO€VAB

Importantly, this is proved not with the inductive definition of (¢, %), but only using general
properties of pseudo cwi-transformations. L]

Using that both 4 p) and 1//H( A,B) satisfy the property above, their equality follows
easily. We calculate:

evVA,B© T(P) (lﬁﬁgA,B)) 0 T(p) (w{'[(A,B))
(Lemma on Yri(a,B))
evypo T(P)(WH(A,B))

(Lemma on T//H(A,B))

= €evVaB
Hence, vri(a,) = wi‘[(A,B) by Lemma@
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4.5. The free lccc. Let LCC be the 2-category of lccecs. Since biequivalences preserve
bi-initiality, the biequivalence of [6] CWFdE’H’I ~ LCC allows us to turn the bi-initial cwf

into a bi-initial LCCC:
Theorem 4.25. The category of contexts of TN

1t 1s bi-initial in LCC°.

1s a bifree lccc on one object, that is,

5. CONCLUSION

We have shown that a version of Martin-Lof Type Theory gives rise to the free cwf, with
and without I, Ny, 3 and II. We have proved this freeness result both in a 1-categorical sense
(with respect to strict cwf-morphisms), and in a 2-categorical sense (with respect to pseudo
cwf-morphisms). It follows that the category of contexts of our type theory 71Nt=11 is a
bifree lccc. We also proved that equality is undecidable in 75 (improving slightly on the
folklore result), hence showing undecidability of equality in a bifree lccc. There is only one
bifree lece up to equivalence, so in that sense 70N is the bifree lece. However, note that
the undecidability statement is only about our particular presentation of the bifree lccc,
and not about an arbitrary one. We could introduce a notion of recursively presented lccc
and ask the more general question whether an arbitrary such recursively presented bifree
lcce has undecidable equality, but we will leave that for future work.
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APPENDIX A. ON PSEUDO CWF-TRANSFORMATIONS (ERRATUM FOR [6])
In [6], pseudo cwf-transformations (2-cells in the 2-category of cwfs) are defined as follows.

Definition A.1. [Pseudo cwf-transformation — version of [6]] Let F' and G be cwf-morphisms
from (C,T) to (C',T'). A pseudo cwf-transformation from F to G is a pair (¢,1) where
¢ : F'= @G is a natural transformation, and ¢4 : FA — GA[pa] is a morphism in T'(FA)
for each A in C and A € Ty,(A). Furthermore, 14 is natural in A and the following
diagram commutes:

T (Fv)(¥a)

FA[FY] GAlpaF(v)]
lefgﬁ LT/@OF)(@%J
F(A[4]) G(A[])[er]

YAl

Here 6 and ¢ are the isomorphisms witnessing preservation of substitution in types in the
definition of pseudo cwi-morphisms.

When working on the present paper, we discovered a shortcoming of this definition: the
component 1) is not constrained enough by . This causes a mismatch with the 2-cells in
LCC (where only the ¢ remains), and as a consequence the family of cwf-transformations
e used in the biequivalence (see [6]) fails to satisfy the required condition of pseudonatural
transformations.

What is missing from the definition of pseudo cwif-transformation is the following co-
herence diagram which must commute for the biequivalence to hold:

F(A.A) Faa G(A.A)

PZ,Ai lpg,A
Ya ek
FA.FA—"2 FA.FA[pa] 22~ GA.GA

This diagram shows that ¢ can be defined from ¢. Hence we could simply define pseudo
cwf-transformations as natural transformations ¢ : F' = G. However, we have not done so,
because pseudo cwf-transformations are most naturally presented with the v, reflecting the
second component of cwfs and cwf-morphisms. Moreover, in our proof of bifreeness, the
construction of the unique cwf-transformation between the interpretation and an arbitrary
pseudo cwi-functor naturally constructs ¢ and ¢ by mutual induction.

With the addition of the coherence diagram above, the naturality requirement and the
coherence diagram of Definition become redundant, as we establish here. The following
lemma is a mild generalization of Lemma 5 of [6].

Lemma A.2. Let F,G : C — C' be pseudo cwf-morphisms, and let (p,1) be a pseudo cwf-
transformation from F to G, in the sense of Definition . Then, (p,%) is also a pseudo
cwf-transformation in the sense of Definition[A.]], i.e. it satisfies the coherence law:

T/ (Fv)(¥a)

FA[F] GA[paF(7)]
lem LT’(W)(@'M)
F(A[]) G(AN))er]

YAy



32 SIMON CASTELLAN, PIERRE CLAIRAMBAULT, AND PETER DYBJER

Proof. We first check that 14 is natural in A. More explicitely, recall from [6] that each
cwi-transformation F': C — C’ induces, for any context I' of C, a functor:

Fr: T(D) — T'(FT)

Its action on types is obvious. Recall that a morphism f: A — B in T(I") is a morphism
f:T.A—T.Bin C such that po f = p. Its action on Fr is simply:

ptpo F(f)o(pta) ' : FT.FA— FI.FB
The naturality of ¥4 in A follows directly from the naturality of .

We also need to check that the coherence law of Definition [A.1] holds. We follow the
proof of Lemma 5 in [6], and consider the following composition of squares:

+ PR, 4°G(rH)o(pf 4 )"
FT.G(AR))[pr] — = GT.G(A}]) =~ DL GAG(A)
ip | P
FT GT GA
er Gy

The left hand side square is a pullback — the standard substitution pullback of pg([,)) along
er. In [6], it is noted that the right hand side square is also a pullback, as the image of
a substitution pullback through G; which is there assumed to preserve pullbacks. For us
though F' does not in general preserve pullbacks, but it preserves this one. Indeed, by the
commutation property of Lemma it is straightforward to prove it to be isomorphic to
the substitution pullback of pg4 along G~.

Therefore, the composition of the two squares is a pullback as well. Once we have
established this, the proof follows exactly as in the proof of Lemma 5 in [6]. We exploit that
the two paths T(@F)(Ggﬁ) o T(Fv)(1a) and 94}, © 0577 of the coherence diagram behave
in the same way with respect to this pullback, and therefore are equal by the universal
property. The calculations are given in detail in [6], so we do not repeat them here. []

Thus all pseudo cwi-transformations in the sense of Definition are also pseudo cwi-
transformations in the sense of Definition Moreover, all pseudo cwf-transformations
used in the biequivalence [6] trivially obey this stronger condition. In fact, all the pseudo
cwi-transformations (¢, ) used in the biequivalence were defined by their ¢ component,
whereas the ¢ component was defined a posteriori via the equation of Definition [3.4]

APPENDIX B. PROOF OF LEMMA [4.22]

Although the proof should be doable through direct calculation, the details have proved
intricate. So instead we present a proof using more high-level arguments.

Ifg: A— Band f: B— C are morphisms in a category C, a dependent product of g
along f is a diagram of the form:

P——=D
ev _
717, e
A—g>34f>0
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which is universal among all such diagrams in ¢ and f in the following sense:

|

A——B——C

It follows from the universal property that dependent products of g along f are unique up
to isomorphism.

If C is a cwf supporting II-types, then for all A € Ty,(A),B € Ty.(I".A), there is a
chosen dependent product diagram:

I ATI(A, B)[p] = T'.TI(4, B)

evA,B

_
) I
r.Ap—2= I.A P r

where evy p = (p,app(q,q[p])). It is quite easy to show that this is indeed a dependent
product diagram, see e.g. Proposition 11 of [6]. Moreover, it is also proved in [6] (Lemma
2) that, for two cwfs C and C’ which both support II-types, a pseudo cwf-morphism F
from C to C’" preserves Il-types iff the image of a dependent product diagram on projections
I"A.B —T'.A — I is still a dependent product diagram.

The proof of Lemma [4.22| uses the notion of dependent product diagram and in partic-
ular the corresponding universal property — both paths around the diagram will be proved
to preserve the structure of some dependent product diagrams. Their equality will imme-
diately follow from the uniqueness component of the universal property. We now inspect
in turn all four morphisms of the diagram of Lemma [4.22] and prove that they preserve
dependent product structure.

In the remainder of this section, we consider cwfs C,C’ supporting II-types, F from C to
C' preserving II-types, a substitution v : I' = A of C and types A € Ty.(A), B € Tys(A.A).
We first note:

Lemma B.1. The following is a dependent product diagram.

FA.FA.F(II(A, B)fp]— FA.FTI(A, B)

eVE(I1(A,B) |
/ lp lp
p

FA.FAFB[p;,] FA.FA FA

e}

where eV p(11(A,B)) = PZ,A opa.apoFlevap)o PZ.IA,H(A,B)[p] ©0n(a,B)p° (PZ,IA)Jr
This means that there is a unique isomorphism to the chosen dependent product diagram
of FA and FB[pglA], which is given by the morphism:

ing : F(I(A, B)) - II(FA, FB[py'4])
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involved in the definition of pseudo cwf-morphisms preserving Il-types. The fact that it
yields a morphism of dependent product diagrams means that we also have:

eVpA,FBlp5",] © T(p)(ia,B) = evp(i(a,B))

Proof. By Lemma 2 of [6], the image by F of the chosen dependent product diagram of A
and B is a dependent product diagram. From this diagram we can obtain the diagram above
by applying structural isomorphisms p and 6 on the nodes. Being obtained by transporting
a dependent product diagram along isomorphisms, it is itself a dependent product diagram.
Its evaluation morphism, evp(y(a,B)), is obtained by going through the isomorphisms. The
fact that ¢4 p corresponds to the canonical dependent product diagram morphism is a direct
verification, which appearing in the proof of Lemma 2 of [6]. []

From that follows immediately:

Lemma B.2. The following is a morphism between two dependent product diagrams:

.
FT.FA[F~).F(II(A, B))[(F) o p] - FT.FII(A, B)[FY)
T(Fy)(evpmi(a,B
‘(P P
FT.FA[Fy].FBp3" J[(Fy)*] — FT.FA[F)] P FT
T((F~)op) (i, 5) T(F~)(ia,5)

FL.FA[FALI(FA, FB[pA DI(Fv) o Bl —— FrII(FA, FBlpx . DIFA]

VR A[F~],FB[(FE -
// Lp P

FT.FA[Fy].FB[p3}][(Fy)*] —F FT.FA[F~] FT

where all arrows not explicitely displayed are identities.

Proof. This diagram is obtained by pulling back that of Lemma[B.I|along F'y — it is straight-
forward that this operation preserves dependent product diagrams. L]

Thus we have proved that the left hand side and the right hand side (instantiating
Lemma [B.1] with A[y], B[y*]) maps of Lemma correspond as required to morphisms of
dependent product diagrams. This remains to be done for the upper and lower maps. We
start with the lower map.
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Lemma B.3. The following is a morphism between two dependent product diagrams:

p+

FT.FA[Fy]T(FA, FBlpx',))[(F7) o p] FT.II(F A, FBlpy',])[F]

VR A[FA], FB[(FyE
P

FT.FA[FA).FB[p:!,][(Fy)*]

P

B —
©

FT

(0, T(or 40 O ,+))

FT.FA[F4]

T(E) IO, Ty by 0)) (O, + )00

T (o apy) 05 ,+)00%

FLF(AR)FAB]), F(Bl oy Dl —= FLIEAB), F(BE Do)

FL.F(A])-F (B op ] —— FI.F(Aly)) : FT

P

o

where all arrows not explicitely displayed are identities.

Proof. The only non-trivial equality to prove is that the morphism preserves evaluation, i.e.
that

ev o T(R)(I(B; . Top )y ) (O+))) © 05, = Toply ) (Op) 0 64 0 ev

which is a direct (if somewhat intricate) calculation on cwf combinators. Note that both ev
are evaluation morphisms for chosen dependent product diagrams, i.e. (p,app(q,q[p])). [J

Finally, the last thing we have to prove is that the upper morphism of the diagram
of Lemma i.e. Or(a,B),, induces as well a canonical morphism between dependent
product diagrams.

Lemma B.4. The following is a morphism between two dependent product diagrams:

FT.FA[F+].F(TI(A, B))[(F5) 0 B] — = FT.FTI(A, B)[F"]

T((Fy) ) (evpai(a
J/P P
P

FT.FA[F~).FB[p3}][(Fy)"] FT.FA[FA] P FT

T(p)(6r1(a,5),7)°0% - Or1(A,B)

T(pI:.IA['y])(gBW*)OGXW 04,y

FLF(AW).F(L(A, B))lpl *—~ FT.F(I(A, B)1)

SVP(I(AR],BlyE
P P
P

FLF(AR) F(Bh* oy FT.F(A[) FT

where all arrows not explicitely displayed are identities.

Proof. Recall that (4 ), can be characterised as the unique morphism between two
candidate substitution pullbacks: one computed in C and transported via F', the other
computed in C’. The proof that Or1(4,B),y Tespects evaluation consists in redoing the same
reasoning, but with the whole dependent product diagram rather than just the type.

The following diagram represents the dependent product diagrams for II(A, B) and
II(A[y], B[y"]), along with the morphisms relating them together.
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AATI(A B) AII(A, B)
L. AM II(A, B)[y o p] t \H(A7B)[W]
A
/ T T
\ By F Al r

The front and back faces are both dependent product diagrams. We now map this
diagram to C’ via F, and silently apply the canonical isomorphisms of the pseudo cwf-
morphism structure, to obtain (the bottom part of) the following diagram. We do not
annotate the arrows to avoid cluttering the diagram too much, but they can be recovered
by carefully following the construction of the diagram.

FT.FA[F+).F(I(A, B))[(F) o p]) —— FT.F(II(4, B))[F]
(P)(Or1(a,B)\~) //%(A. ~
FA.F(II(A, B))
F(I(AL B)[])[p] FI.F(II(A4,
FA.FA.FB[/)K A] FA \
FLF(AR).F(BI )iy, FLF(AR) FT

The top part of the diagram is obtained (up to an obvious isomorphism) by pulling
back the dependent product diagram in the back along F~y. By the universal property of
dependent products, the two morphisms from the top dependent product diagram to the
one in the back factor uniquely through the two dotted arrows. But for the right hand side
one, that exactly means that the condition of Lemma [£:20] is satisfied and that the right
hand side dotted map is Oy p),- Similarly, the left hand side dotted map is necessarily
T(p)(0r1(a,B),y)- Therefore, it preserves the evaluation maps, since it was constructed by
the universal property of dependent product diagrams.

Annotating the morphisms following their construction, it becomes apparent that the
commutation we have proved is exactly the statement of the lemma. []

To wrap things up, we note that by the lemmas above all four morphisms of Lemma
correspond to canonical morphisms between dependent product diagrams: @4, pjy+
by Lemma T(F~v)(ia,p) by Lemma E H(G;}W,T(,oihm)(ﬂB;ﬁ)) by Lemma &
and 0ry(4,B),, by Lemma The corresponding morphisms between dependent product
diagrams are composable, and by uniqueness of the universal property it follows that the
two paths of the diagram of Lemma [4.22] coincide.
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